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ABSTRACT

Our principal objective in this research program is to obtain

solutions to fundamental problems in computer vision; particularly those

problems that are relevant to the development of an automated capability

for interpreting aerial imagery and the production of cartographic

products.

Our plan is to advance the state of the art in selected core areas

such as stereo compilation, feature extraction, linear delineation, and

image matching; also, to develop an "expert system" control structure

which will allow a human operator to communicate with the computer at a

problem oriented level, and guide the behavior of the low level

interpretation algorithms doing detailed image analysis.

Finally, we plan to use the DARPA/DMA Testbed as a mechanism for

transporting both our own and IU community advances, in image

interpretation and scene analysis, to DMA, ETL, and other members of the

user community.
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I INTRODUCTION

A major focus of our current work is the construction of an Expert

System for Stereo Compilation and Feature Extraction. Our intent in

this effort is to develop a system that provides a framework for

allowing higher level knowledge to guide the detailed interpretation of

imaged data by autonomous scene analysis techniques. Such a system



would allow symbolic knowledge, provided by higher level knowledge

sources, to automatically control the selection of appropriate

algorithms, adjust their parameters, and apply them in the relevant

portions of the image.

Recognizing the difficulty of completely automating the

interpretation process, the expert system will be structured so that a

human operator can provide the required high level information when

there are no reliable techniques for automatically extracting this

information from the available imagery. As new research results become

available, the level of human interaction can be progressively reduced.

The expert system we are building can thus be viewed as an

intelligent user-level interface for guiding semiautomated image

processing activities. Such a system is envisioned as a rule-based

system with a library of processes and activities, which can be invoked

to carry out specific goals in the domain of cartographic analysis and

stereo reconstruction. The system would depend on the human user for

those types of information not easily extracted from the given imagery,

and allow the computer system to take over in those areas where the

utility of automated analysis has been clearly demonstrated.

Development of the expert system control structure is a research

task still in an early stage of accomplishment. The remainder of this

report will describe progress in research supporting the development of

potential scene analysis components of the system, as well as other

Image Understanding research of a more basic nature.
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II RESEARCH PLANS AND PROGRESS

A. Development of Methods for Modeling and Using Physical Constraints

in Image Interpretation.

Our goal in this work is to develop methods that will first allow

us to produce a sketch of the physical nature of a scene and the

illumination and imaging conditions, and next permit us to use this

physical sketch to guide and constrain the more detailed descriptive

processes -- such as precise stereo mapping.

Our approach is to develop models of the relationship between

physical objects in the scene and the intensity patterns they produce in

an image (e.g., models that allow us to classify intensity edges in an

image as either shadow, or occlusion, or surface intersection, or

material boundaries in the scene); models of the geometric constraints

induced by the projective imaging process (e.g., models that allow us to

determine the location and orientation of the camera that acquired the

image, location of the vanishing points induced by the interaction

between scene and camera, location of a ground plane, etc.); and models

of the illumination and intensity transformations caused by the

atmosphere, light reflecting from scene surfaces, and the film and

digitization processes that result in the computer representation of the

image.

These models, when instantiated for a given scene, provide us with

the desired "physical" sketch. We are assembling a "constraint-based

stereo system" that can use this physical sketch to resolve the

ambiguities that defeat conventional approaches to stereo modeling of

scenes (e.g., urban scenes or scenes of cultural sites) for which the

images are widely separated in either space or time, or for which there

are large featureless areas, or a significant number of occlusions.

Recent publications of our work in this area are cited in the

references [1-4, 9-12]. Also see Appendicies A and B.
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B. Stereo Compilation: Image Matching and Interpolation

We are implementing a complete state-of-the-art stereo system that

produces dense range images from given pairs of intensity images. We

plan to use this system both as a framework for our stereo research, and

as the base component of our planned expert system.

There are five components of this stereo system: a rectifier, a

sparse matcher, a dense matcher, an interpolator, and a projective

display module. The rectifier estimates the parameters and distortions

associated with the imaging process, the photographic process, and the

digitization. These parameters are used to map digitized image

coordinates onto an ideal image plane. The sparse matcher performs two-

dimensional searches to find several matching points in the two images,

which it uses to compute a relative camera model. The dense matcher

tries to match as many points as possible in the two images. It uses

the relative camera model to constrain the searches to one dimension,

along epipolar lines. The interpolator computes a grid of range values

by interpolating between the matches found by the dense matcher. The

projective display module allows interactive examination of the computed

3-D model by generating 2-D projective views of the model from

arbitrarily selected locations in space. Initial versions of all

components of the system have been implemented.

Present research in this task is focused primarily on the image

correspondence (matching) and interpolation problems. With respect to

image matching, the following major issues are being addressed:

* What is a correct match?

* How does one measure the performance of a matcher?

* What causes existing matching techniques to fail?

* How can one improve the performance of matching techniques?

Since there are no reliable analysis techniques for evaluating the

performance of matching algorithms when applied to real world images, we

must evaluate them by extensive testing. To expedite such testing, a

database of images and ideal match data (ground truth) is being

4



assembled. For example, we have acquired data from the ETL Phoenix test

site that were produced specifically for testing matching techniques.

Every point in the database we are constructing contains annotations

that indicate the categories of matching problems for that point, and

other information that might be useful to evaluate the performance or

guide the application of matching techniques.

We are currently investigating a hypothesize - verify approach to

local matching. Potential matches are verified by examining the image

for compliance with the assumptions of the matching operator's model.

For example, area correlation matching operators assume that correctly

registered image patches will differ only by Gaussian noise. A simple

verification technique is to examine the statistics of the point-by-

point difference between the hypothesized alignment of the patches for

conformance with that model. Image anomalies, such as moving objects or

occluding contours, will typically produce a difference image that has a

highly structured geometry, indicating the shape and location of the

anomaly. Such anomalous areas can be removed from the region over which

the correlation is computed, and the process iterates until either an

acceptable match criterion is satisfied, or too many points are removed

from the region.

In many cases (e.g., occlusion and featureless areas) local

matching techniques are not capable of producing the required

correspondences over regions of significant extent. We intend to use

the information provided by the "physical sketch" (see previous section)

to detect such situations, and to select alternative means for obtaining

the required depth information.

As indicated above, when a stereo pair of images are matched, we

generally can do no better than to compute a sparse depth map of the

imaged scene. However, for many tasks a sparse depth map is inadequate.

We want a complete model that accurately portrays the scene's surfaces.

To achieve this goal, we must be able to obtain the missing surface

shape information from the shading of the images of the stereo pair.
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To understand the relationship between image shading and surface

shape, we built a differential model [see references 10 and 1 that

relates shape and shading but, unfortunately, does not provide a

complete basis for a shape recovery algorithm [see reference 12].

However, the information available in image shading does allow "Ie

building of a surface interpolation algorithm that finds a surface that

is consistent with the image shading. We are proceeding with such a

development.

As image shading alone does not provide sufficient information to

find surface orientation, further shape information sources in the image

are needed. We are evaluating additional scene attributes that encode

shape information in their image, and the models necessary to recover

the corresponding shape information.

C. Feature Extraction: Scene Description, Partitioning, and Labeling

Our current research in this area addresses two related problems:

(1) representing natural shapes such as mountains, vegetation, and

clouds, and (2) computing such descriptions from image data. The first

step towards solving these problems is to obtain a model of natural

surface shapes.

A model of natural surfaces is extremely important because we face

problems that seem impossible to address with standard descriptive

computer vision techniques. How, for instance, should we describe the

shape of leaves on a tree? Or grass? Or clouds? When we attempt t

describe such common, natural shapes using standard shape-primitive

representations, the result is an unrealistically complicated model of

something that, viewed introspectively, seems very simple. Furthermore,

how can we extract 3-D information from the image of a textured surface

when we have no models that describe natural surfaces and how they

evidence themselves in the image? The lack of such a 3-D model has

restricted image texture descriptions to being ad hoc statistical

measures of the image intensity surface.
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Fractal functions, a novel class of naturally-arising functions,

are a good choice for modeling natural surfaces because many basic

physical processes (e.g., erosion and aggregation) produce a fractal

surface shape, and because fractals are widely used as a graphics tool

for generating natural-looking shapes. Additionally, we have recently

conducted a survey of natural imagery and found that a fractal model of

imaged 3-D surfaces furnishes an accurate description of both textured

and shaded image regions, thus providing validation of this physics-

derived model for both image texture and shading.

Encouraging progress relevant to computing 3-D information from

imaged data has already been achieved by use of the fractal model. We

have derived a test to determine whether or not the fractal model is

valid for particular image data, developed an empirical method for

computing surface roughness from image data, and made substantial

progress in the areas of shape-from-texture and texture segmentation.

Characterization of image texture by means of a fractal surface model

has also shed considerable light on the physical basis for several of

the texture partitioning techniques currently in use, and made it

possible to describe image texture in a manner that is stable over

transformations of scale and linear transforms of intensity.

The computation of a 3-D fractal-based representation from actual

image data has been demonstrated. This work has shown the potential of

a fractal-based representation for efficiently computing good 3-D

representations for a variety of natural shapes, including such

seemingly difficult cases as mountains, vegetation, and clouds.

This research is expected to contribute to the development of

(1) a computational theory of vision applicable to natural surface

shapes, (2) compact represetations of shape useful for natural

surfaces, and (3) real-time regeneration and display of natural scenes.

We also anticipate adding significantly to our understanding of the way

humans perceive natural scenes.

Details of this work can be found in Pentland (8], reproduced as

Appendix C to this report.
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D. Linear Delineation and Partitioning

A basic problem in machine vision research is how to produce a line

sketch that adequately captures the semantic information present in an

image. (For example, maps are stylized line sketches that depict

restricted types of scene information.) Before we can hope to attack

the problem of semantic interpretation, we must solve some open problems

concerned with direct perception of line-like structure in an image and

with decomposing complex networks of line-like structures into their

primitive (coherent) components. Both of these problems have important

practical as well as theoretical implications.

For example, the roads, rivers, and rail-lines in aerial images

have a line-like appearance. Methods for detecting such structures must

be general enough to deal with the wide variety of shapes they can

assume in an image as they traverse natural terrain.

Most approaches to object recognition depend on using the

information encoded in the geometric shape of the contours of the

objects. When objects occlude or touch one another, decomposition of

the merged contours is a critical step in interpretation.

We have recently made significant progress in both the delineation

and the partitioning problems. Our work in delineation [51 is based on

the discovery of a new perceptual primitive that is highly effective in

locating line-like (as opposed to edge-like) structure.

Our work on decomposing linear structures into coherent components

[see reference 6 and Appendix D] is based on the formulation of two

general principles that appear to have applicability over a wide range

of problems in machine perception. The first of these principles

asserts that perceptual decisions must be stable under at least small

perturbations of both the imaging conditions and the decision algorithm

parameters. The second principle is the assertion that perception is an

explanatory process: acceptable precepts must be associated with

explanations that are both complete (i.e., they explain all the data)

and believable (i.e., they are both concise and of limited complexity).

I . . . . b - " • lnl f . . . . i R . . .. . . . .. . . .. . .. .. . . ..



These new delineation and partitioning algorithms have produced

excellent results in experimental tests on real data [see references 5

and 6 and Appendix D].

REFERENCES

1. S. Barnard and A. Pentland, "Three-Dimensional Shape from Line
Drawings," Proceedings of the Image Understanding Workshop,
Arlington, Virginia (June 1983) and IJCAI-83.

2. S. Barnard, "Methods for Interpreting Perspective Images," (in
press) AI Journal (1983).

3. S. Barnard and M.A. Fischler, "Computational Stereo," ACM Computing
Surveys, Vol. 14 (4) (December 1982).

4. M.A. Fischler, et.al., "Modeling and Using Physical Constraints in

Scene Analysis," AAAI-82.

5. M.A. Fischler and H.C. Wolf "Linear Delineation," IEEE CVPR-83.

6. M.A. Fischler and R.C. Bolles "Perceptual Organization and Curve
Partitioning," Proceedings of the Image Understanding Workshop,
Arlington, Virginia (June 1983) and IEEE CVPR-83.

7. K. Laws, "On the Evaluation of Scene Analysis Algorithms,"
Proceedings of the Image Understanding Workshop, Arlington,
Virginia (June 1983).

8. A. Pentland, "Fractal Based Description of Natural Scenes,"
Proceedings of the Image Understanding Workshop, Arlington,
Virginia (June 1983) and IEEE CVPR-83.

9. A. Pentland, "Depth of Scene from Depth of Field," Proceedings of
the Image Understanding Workshop (September 1982).

10. A. Pentland, "Local Analysis of the Image: Limitations and Uses of
Shading," Proceedings of the (IEEE) Workshop on Computer Vision:
Representation and Control, Rindge, New Hampshire (August 1982).

11. G.B. Smith, "The Recovery of Surface Orientation from Image
Irradiance," Proceedings of the Image Understanding Workshop
(September 1982).

12. G.B. Smith, "The Relationship Between Image Irradiance and Surface

Orientation," Proceedings of the Image Understanding Workshop,
Arlington, Virginia (June 1983) and IEEE CVPR-83.

9



Appendix A
THREE-DIMENSIONAL SHAPE FROM LINE DRAWINGS

By: Stephen T. Barnard and Alex P. Pentland



THREE-DIMENSIONAL SHAPE FROM LINE DRAWINGS

Stephen T. Barnard and Alex P. Pentland

SRI International, 333 Ravenswood Ave., Menlo Park, California 94025

ABSTRACT
The problem of interpreting the shape of a three-dimensional

space curve from its two-dimensional perspective image contour
is considered. Observation of human perception indicates that C
a good strategy is to segment the image contour in such a way
as to obtain approximately planar segments. The orientation of
the osculating plane (the plane In which the space curie lies) can
then be estimated for these segments, and the three-dimensional
shape recovered. The assumption of spatial isotropy is used
to derive the theoretical results needed to formulate such an
estimation strategy. The resulting estimation strategy allows a A B
single three-dimensional structure (up to a single Necker revcrsal)
to be assigned to any smooth image contour. An implementation Figure 1. (a) Some Line Drawings, (b) Their Planar Subregions.
is described and shown to produce an interpretation that is quite
similar to the analytically correct one in the case of a helix, even
though a helix has substantial torsion. The general applicability If we "by hand" try to segment image contours into planar
of the algorithm is discussed, regions, we find that the strategy can be successfully applied

to a surprisingly large number of naturally-occurring image con-
tours. For some contours, however, it is not obvious how well

I Introduction this strategy will work, primarily because there are no points

Much recent vision research has emphasized the impor- which segment the space curve into planar regions. An example
tance of image contour for shape interpretation 11,2,3,4,5,8,71. of such a curve is the helix shown in Figure 2 (a). Nonetheless,
Tenenbaum and Barrow 11] argue that image contour, for ex- it may still be possible to obtain a good approximation of the
ample. is dominant over shape from shading. Pentland 18] has three-dimensional structure of inch a curve using this strategy.
presented examples in which the addition of a contour substan- B. A Strategy For Recovering Three-Dimensional Shape
tially improved the interpretation of a shaded surface. It seems
that contour is one of the strongest sources of information for This observation about human perception leads to the fol-
shape perception. lowing processing strategy:

One source of evidence of the strength of contour information (1) Segment the image contour in such a way that each
is line drawings. When we examine a line drawing, our perception segment is likely to comprise a projection of a planar segment
of the three-dimensional shape implied by such a drawing is of the space curve.
nearly always clear and unambiguous. How can we account for (2) Calculate the planes implied by the segments from (1).
this, given that purely geometrical constraints admit of an infinite (3) Assemble the results of (2) into an estimate of the shape
number of valid interpretations? of the entire space curve.

The specific criteria for the initial segmentation are not dealt
A. An Observation About Human Perception with here. It is clear, however, that the image contour should

When we observe line drawings such as those in Figure I be segmented at singular points of curvature (maxima, minima,
(a), we have a clear perception of a non-planar three-dimensional and inflection points). lHoffman and Richards [101 have presented
structure. Notice that if we were to segment each of these draw- a theory of curve segmentation that addresses this issue. Our
ings at the circled points, each of the resulting segments would approach will be to temporarily ignore the segmentation problem
have the same shape as they did when they were still hooked and to simplN estimate the orientation of parts of the space curve
together and would be approzimately planar, as is shown in from many local parts of the image contour. If valid results are
Figure 1 (b). Thus, for these line drawings the problem of recover- forthcoming with this approach the method can only be improved
ing the three-dimensional structure can be reduced to the prob- with more elaborate segmentation.
lems of (I) segmenting the curve into perceptually planar seg- C. Modeling the Space Curve
ments, and (2) finding the plane that contains each of the curve
segments (the osculating plane) (9]. Once we know the orienta- We shall model a space curve in the conventional way, as a
tion of the plane which contains a curve segment we can then three-limensiona vector function x a) of one parameter a which
easily determine its three-dimensional shape. is assumed to be a natural parameter, i.e., ld*)/dsl - 1. The

shape of such a curve is completely determined by two properties
The .rthat are scalar finct ions of #: curvature, n(s), and torsion, r(s) [9].
The research reported herein was supported by the Defense Curvature is always nonunegative; only straight lines and inflection

Advanced Research Projects Agency under Contract No. MDA point! have rero curvature. Torsion may be intuitively defined as
903-83-C-0027; this contract is monitored by the U. S. Army tAe amount of 'twist" in the curve at a point s. Another way to
Engineer Topographic Laboratory. Approved for public release, visualise torsion is as the degree to which the osculating plane
distribution unlimited. (the plane which contains the curve) is changing. Only planar
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curves have zero torsion everywhere. Unlike curvature, torsion likelihood estimate of the space curve's shape is given by the
may be either negative or positive. following proposition (see also 121):

The presence of torsion is not directly evident in the image. Proposition (Planar Interpretation). Given an ellip-
It simply results in more or less foreshortening as the osculating tical segment of an image contour and that the space
plane of the contour varies. The effects of torsion, therefore, can curve is planar, the maximum likelihood estimate of the
be exactly mimicked by changes in curvature, and vice versa. space curve's three-dimensional shape is a segment of a

circle.
H Theory of Contour Interpretation Barnard 112] has constructed a maximum entropy estimator

that implements this proposition for perspective images and that
Not all three-dimensional interpretations of an image con- is tolerant of digitization noise. Operating under the assump.

tour are equally likely. If we assume that spatial isotropy holds, tion that the space curve has zero torsion, it chooses the orient,-
then we know that viewer position is independent of the shape of tion that maximizes the entropy of backprojected image contour
the curve -- which allows us to make a reasonable guess about curvature measurements. That is, curvature is first measured
the latter's three-dimensional shape 181. The first step towards a at several points in the image contour, then the curvatures of
guess at the space curve's shape is the following proposition: hypot bet ical planar space curves of essentially all orientations are

Proposition (Zero Torsion). The maxImum-lIkelihood computed by backprojection, and, finally, the orientation that
estimate of the torsion of the space curve is seen (i.e., no leads to t he space curve of most uniform curvature (in the sense
'twisting" of the curve). of maximum entropy) is selected. In general, three image con-

This proposition follows because the assumption of spatial tour curvature measurements are sufficient for an unambiguous
isotropy implies that the viewer's position and the shape of the maximum-entropy interpretation (up to a Necker reversal).
space curve are mutually independent. Thus, not only is it un-
likely that significant features of the curve will be hidden from II Three-Dimensional Estimation
view by coincidental alignment of the viewer and the curve, but,
conversely, it is likely that the viewed scene will not change much Now let us return to the general problem of estimating the
with small changes in viewing position.* The appearance of a shape of the space curve, given a smooth imaged contour. Let
curve with substantial torsion" will change considerably with us first take three curvature measurements along the imaged
small changes in viewer position; if we assume spatial isotropy, contour. These three measurements define an ellipse. As just
therefore, we must expect that the torsion of the curve will be described, this leads to a circular interpretation of the space
small, curve. Now suppose that we have additional image contour cur-

Furthermore, given that spatial isotropy implies that the vature measurements. There are, then, two cases to consider:
viewer position and the shape of the curve are mutually inde- First case: the new points fit on the same ellipse. In
pendent, the torsion of the curve must then also be independent the first case we have quite strong evidence of the space curve's
of viewer pnsition. Consequently, the torsion of the curve is as shape. For, if the osculating plane were changing, the curvature
likely to be positive as negative, and thus the mean value (and would have to be changing also - and in just such a manner
maximum-likelihood estimate) for the magnitude of the torsion as to exactly cancel (in the image) the effect of the changing
is zero t . The probability that the torsion is small implies this osculating plane. Similarly, if the curvature of the space curve
estimate will generally be a good one. were changing, the osculating plane would have to change just

A. Estimation With The Assumption Of Zero Torsion exactly enough to cancel the effect of the changing curvature.
As such a "conspiracy" to cancel the visible effects of change is

Even if we assume that torsion is zero (i.e., the space curve unlikely (a direct violation of general position), we must conclude
is planar), there is still a two-parameter set of space curves that that there was neither torsion nor change in curvature, and, thus,
could have generated that imaged contour. The two parameters there is a great (in fact, maximum) likelihood that the new image
correspond to the two degrees of freedom of the osculating plane. curvature measurements result from the same circular space curve

Assume that we are given a small portion of an imaged defined by the first three measurements.
contour, and asked to estimate the three-dimensional shape of Second case: the new points don't fit on the same
the space curve which generated that image. If we measure the ellipse. What if the additional measurements lie off the ellipse
position and curvature at three points on the imaged contour, defined by the first three measurements Then we can be certain
then we can uniquely define an elliptical arc that fits the image that either the curvature or the osculating plane (or both) of
data. By the previous proposition, this elliptical arc is most likely the space curve has changed. This new point is, therefore, a
caused by a space curve that is either an arc of a circle or of an possible place to segment the curve. What we must do when we
ellipse, as those are the two planar (zero torsion) shapes which encounter such a point is advance along the image contour until
can project to an ellipset t . we are completely past the point, and obtain a new estimate of

Previous research (12], 112]) has shown that the maximum- the space curve's osculating plane. If the new osculating plane
has the same orientation as the previous osculating plane, then

"rlhis is often referred to as the assumption of general position. we have evidence that the space curve continues to be planar,
Thus, spatial isotropy implies general viewing position. and we should not segment the curve. If. however, we obtain
".As a function of position on the image contour rather than as a different orientation for the osculating plane, then we should

a function of a segment the space curve and begin a new planar segment of the
curve.

tNote that at places where the curvature is zero - straight As any smooth image contour may be closely approximated
segments ail inflection points - the torsion is not defined and by portions of ellipses and straight lines , this interpreta-
may arbitrarily he taken to be zero. That is, the osculating plane tion strategy will yield a single interpretation for the three-
may be cbanged freely at these points without affecting the shape .... .
of the space curve. *"Only the third and higher derivatives of the imaged contourt t This is true of both perspective and orthographic projection, that will fail to be exactly matched. People, it should be noted.

however, we will deal exclusively with the more general case of are very poor obs,,rvcrs of changes in the third derivatives of an
perspective foreshortening. image contour.
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dimensional shape of the space curve (up to Necker reversals).
Further, this interpretation will he the most likely interpreta-
tion on a point-by-point basis. It should he noted that the first
two steps of this estimation strategy are similar to the strategy
proposed in 111.

IV An Example

The interpretation strategy has been implemented and ap-
plied to a synthetic image of a helical space curve. The helix
example is a good test because a helix has significant torsion
every-where, thus, distinguished segmentation points do not ex-
ist and it is not clear what the estimation strstegy will do. If
we ean recover the helical shape of the space curve with some ac-A
cur acy, we shall have demonstrated that the estimation strategy
can perform even when no good segmentation is available.

Figure 2 (a) shows a perspective image of a helix. Figure
2 (b) shows a plot of the spherical indicatrix of the helix. The
spherical indicatrix is a plot of the orientation of the osculat-
ing plane of the space curve. The axes in this plot corresponds
to the azimuth and elevation of the osculating plaine. As men-
tioned previously, knowledge of the orientation (azimuth and
elevation) of the osculating plane at each point, together with
the imaged contour, uniquely determines the shape of the space
curve. Thus, the spherical indicatrix is a method of displaying the
three-dimensional shape of the space curve. Figure 2 (c) shows
the spherical indicatrix estimated for the contour in (a). When

this is compared with the actual indicatrix shown in (b), it is
evident that the three-dimensional shape of the space curve has

Summary. We have developed a theory for assigning a
three-dimensional interpretation to any smooth image contour.
The theory has been implemented and is undergoing evaluation,
which may lead to further development. The results reported
above indicate that the estimation strategy performs reasonably
well even for cases such as a helix, where the presence of substan-
tial torsion might have led one to expect poor performance.
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AND SURFACE ORIENTATION
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ABSTRACT

A formulation of shape from shading is presented in which
surface orientation is related to image irradiance without re-
quiring detailed knowledge of either the scene illumination or
the albedo of the surface material. The case for uniformly
diffuse reflection and perspective projection is discussed in detail.
Experiments aimed at using the formulation to recover surface
orientation are presented and the difficulty of nonlocal computa-
tion discussed. We present an algorithm for reconstructing the
3-D surface shape once surface orientations are known.

1 INTRODUCTION

When the human visual !,ystem processes a single image,
e.g., Figure 1, it returns a perceived 3-D model of the world, even
when that. image has limited contour and texture information.
This 3-D model is underdetermined by the information in the
2-D image; the visual system has used the image data and its
model of visual processing to reconstruct the 3-D world. While
there are many information sources within the image, shading is Figure I Shape from Shading.
an important source. Facial make-up or a cartoonist's shading,
is an everyday example of the way shape, as perceived by our face albedo [31. The cost we incur for dispensing with these
human visual system, is manipulated by shading information, restrictions is the introduction of higher-order differentials into

A primary goal of computer vision is to understand this the equations relating surface orientation and image irradiance.
process of reconstructing the 3-D world from 2-D image data, The benefits we gain allow us to investigate the strength of the
to discover the model, or models that allow 2-D data to infer constraint imposed by shading upon shape. 'ast attempt, to
3-D structure. The focus of this work is the recovery of the 3-D solve the shape-from-shading problem, as wel as our own effort,.
orientation of surfaces from image shading. have been aimed at recovering surface shape from iniage patches

We present a formulation of the shape-from-shading prob- for which the reflectance (albedo) can be considered constant.
lem, i.e., recovering X-D surface shape from image shading, Previously we examined the influence exerted hv the as-

that is derived under assumptions of perspective projection, sumption of uniformly diffuse reflection [I, and inlicatt'l that
uniformly diffuse reflection,' and constant reflectance. This for- the equations relating surface orientation to iniage irradiance
mulation differs from previous approaches to the problem in that could be expected to yield ust.ful results even in cases in which
we neither make assumptions about the surface shape 121, nor the reflection is not uniformly diffuse. In that examination we as-
use direct knowledge of the illumination conditions and the sur- sumed orthographic rather than perspective projection. A coin-

. . .. .. parisoin of our previous work with this paper, howeser, shows
The research reported herein was supported by the terense Advanced that the structure of the formulation is not dependent upon the
Research Projects Agency under Contract MDA903-83-C-0027 and by the
National Aeronautics and Spae Administration under (',ntract NASA projection used.
0-16864. These contracts are monitored by the U.S. Army Engineer If we add additional assumptions, e.g., constraints on the
Topographic Laboratory and by the Texas A&M Research Frundation fr surface type, we can simplify the relationship between surface
the Lyndon R. Johnson Space Center. orientation and image irradiance. While it is not our goal to add
iWe prefer the expression isotropic eattering to either uniformly dif- constraints upon surface type, the a-sumption that the surface
fuse reflection, or Lambertian reflection, as it empha.-is that scene
radiance is isotropic. However, uniformly diffuse reflection, and Lambertian is !ocaily spherical allows the approximate surface orientation to
reflection are the terms commonly used to indicate that tht scene radiance Ie recovered by local computation.
is isotropic.
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not too large and that we are not adjacent to an object's edge.
Consequently, in this discussion we assume that the Z component

y SURFACE of the surface normal is positive and that I and m constitute an
NORMAL adequate parameterization of scene surfaces.

SURFACE I .
PATCH -A, _

...... -. 3 IMAGE IRRADIANCE

SGTThe image irradiance equation we use is [41

LIGHT J(u,v) = R(l,m)cos 4 
a

PROJECTION RAY

CENTER where 1(u, v) is the image irradiance as a function of the image
- - coordinates u and V, and R(I,m) is the surface radiance as a

IMAGE PLANE function of I and m, the components of the surface normal. 2 The

"X. f term cos 4 a represents the off-axis effect of perspective projec-

U u _ / tion. When a is small, cos 4 a is approximately unity; we then
have the more familiar form of the image irradiance equation.
From Figure 2 we see that

Z Cosa - f

FIgure 2 Coordlnte FPrme. X.Y.Z are the scene coor- V
f4

2 + ,
2 

+f2

dinates, UV the image coordinates, and the image plane is located a
distance f from the scene coordinate's origin- the projection center. Differentiating the image irradiance equation with respect
a is the angle hetween the Z axis (the viewing direction) and the ray to the image coordinates u and v, we obtain
of light from the scene point (., y, z) to the image point (u, v). I and
m are the X and Y components of the surface normal n. u - Rilu + Rmifu

2 THE COORDINATE FRAME AND I. = R11, + Rmfrl,

REPRESENTATION OF SURFACE -RttIu
2 

+ Rimmu2 + 2 Rimlumu + Rlu + Rmmu.. ,
ORIENTATION 1 -Rgiu,2 + Rmm

2 
+ 2Rlmv + R115 , + Rmsvs

The coordinate system we use is depicted in Figure 2. X,Y,Z 4'. - RIuIlI + Rmmmumv + Rtm(lumv + Ivmu)

are the scene coordinates and U,V are the image coordinates. + RtII., + R_,,m_,
The image and scene coordinates are aligned so that X and U where subscripted variables denote partial differentation with
axes are parallel, as are the Y and V axes. The U and V axes are respect to the subscript(s), and
inverted with respect to the X and Y axes, so that positive X and
Y coordinates will correspond to positive U and V coordinates. it I 4ul

____ X 4 + -_ )
The image plane is located at a distance f from the (perspective) C/s

4 a 2I + V
2 + f2

projection center, the origin of the scene coordinates. A ray of I 4t,1
light from the point(,I, -)in the scene to the image point (u,') 0 4 ( o")(, + u +

makes an angle a with the viewing direction (i.e., the Z axis).

There are many parameterizat ions of the surface orienta- I' , S 1 X 1- u2 + V, + f2 (u2 + V2 + f-)2
tion: we choose to use (, i), which are the X and Y components 41

of the unit surface normal. In Figure 2, n is the unit normal + 12 + t,2 + )2
of the surface patch located at (.r,Vz); I and m are the com- V4,t,=I
ponents of this surface normal in the X and Y directions. From I =" 8o !, + u , + + -
our viewing position we can see at most hair the surfaces in the 41 + V

2 + f (U
2
+tV

2
+ f)2

scene (i.e.. those that face the viewer). The Z component of the +r_
surface normal has the magnitude %(I _-1V Mn, the sign deter- I 40/ 4ul
mining whether the surface is forward-facing (has a positive Z I,, = (+ _- + 2 +-

component), or backward-facing (has a negative Z component). co + 2 + f2 u2  t,2 
+2

For large off-axis angle a, we see backward-facing surfaces near + (#2 f. r.)2
the edges of objects. The two components of the surface normal,
I and m, do not provide an adequate parameterization of the 

tlmage irradiance in the light flux per unit area falling on the image, i.e..

surface in this case. Additionally, we need to know the sign of incident flux density. Scene radiance is the light fux per unit projected area
the Z component. Ilere we restrict ourselves to forward-facing per unit solid angle emitted from the scene. i.e., emitted flux density per

surfaces. This minor restriction amounts to assuming that a is unit solid angl-.
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If we are to use these expression to relate image measure- Substituting these relationships for R0 and R,_ in the
meats, e.g., It., to surface parameters I and m, then we must expressions for P ,,I',and P ., we obtain
remove the derivatives of R.

11.2( in2) + m"2( -12 ) + 2Ilsn.IR1, -

4 UNIFORMLY DIFFUSE REFLECTION 2l- Rf -2 mm. 

To provide the additional constraints we need for relating It.1 ) + m. 2
( -a- ) + 21.m,Rg,,

surface orientation to image irradiance, we introduce constraints 1.. - Rdi,, - Rmmv.
that relate properties of R(l,m), - that is, constraints that ul(!- m

2 + mm(I.m .

specify the relationship between surface radiance and surface Im ) + Im. + Isinu]Rl,.
orientation. Such constraints are I., - Ri1,, - Rmmnnv

(1 - =)R _ (I m2)Rmm By removing Rim and substituting the expressions for Ri(Ri - Rmm)im - m2 )Rim and R., defined by the expressions for P and P, we produce

two partial differential equations relating surface orientation to

where Ru is the second partial derivative of R with respect to image irradiance:

1, Rn,, is the second partial derivative of R with respect to rn, 91 + m 1 - m = / -

and Rim is the second partial cross-derivative of R with respect
to I and m.

These two partial differential equations embody the s- where
sumption of uniformly diffuse reflection. For uniformly diffuse
reflection, R(I, m) has the form a Pum. - J',n

R(I,m)=al+btbm +c -l 2 -m 2 +d , lu2(l _m 2 )+mu 2 (i _-2 )+2l nulm
= 1,2(I - m 2 )+ m,

2
(I -/2) + 21..m.lm

where a, b,e, and d are constants, their values depending on lul - im
2

)+ mum5 (1 -2) +(IluM, + I ,mu)lm

illumination conditions and surface albedo. Note that 1,m, and

are the components of the unit surface normal in

the directions XX, and Z. R(l,m) can be viewed as the dot These equations relate surface orientation to image ir-
product of the surface normal vector (I, m, vff-/ _ m2) and a radiance by parameter-free expressions. We make no as-
vector (a, 6, r) denoting illumination conditions. As the value of a sumptions about surface shape, nor do we need to know the
dot product is rotationally independent of the coordinate system, parameters specifying illuminant direction, illuminant strength,
the scene radiance is independent of the viewing direction - and surface albedo. Our assumptions are about the properties
which is the definition of uniformly diffuse reflection, of reflection in the world; these alone are sufficient to relate

It is clearly evident that R(I,rn) - at + bm + surface orientation to image irradiance. The above equations
cv'I - P - m2 + d satisfies the pair of partial differential equa- have been derived for the case of perspective projection; for or-
tions given above. In Ill we showed that R(,in) = al + bm + thographic projection, the primed (') quantities are replaced by
evi - P -. mnd+d is the solution of the pair of partial differential their umprimed counterparts, e.g., 1., is replaced by I.. The
equations. These partial differential equations are an alternative form of the equations is not a function of the projection used.
definition of uniformly diffuse reflection.

It is worthy of note that R(I, "a) = al+bm+rc/i 1"- 2+
d includes raliance functions for multiple and extended illumina- 5 RECOVERY OF SURFACE
tion sources, including that for a hemispherical uniform source ORIENTATION
such as the sky. Of course, at a self-shadow edge R is not
differentiable, so that the surfaces on each side of the self-shadow It is difficult to solve the equations relating surface orienta-

boundary have to be treated separately. The assumption of tion to image irradiance, and thus to recover surface shape from

uniformly diffuse reflection restricts the class of material surfaces observed image irradiance. We have used numerous integration

being considered, not the illumination conditions. schemes that characterize two distinct approaches. The two

From the constraints for uniformly diffuse reflection, we differential equations can be directly integrated in a step-by-step

derive the relationships manner or, given some initial solution, a relaxation procedure
may be employed. The difficulties that arise are twofold: numeri-

i- m2  cal errors and multiple solutions.
At == m- Rim Solutions of the equation X - 0 (the developable surfaces,

I -12 Rim e.g., a cylinder) are also solutions of the equations relating sur-
1

nm = Im face orientation to image irradiance. If the image intensities
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were known in analytic form, the analytic approach to solving Provided that u and v are small compared with (e.g., in the

the equations could then employ boundary conditions to select eye or in a standard-format camera), then

the appropriate solution. However, since the analytic form for
the image intensities is unknown, numerical procedures must (I - M2 ) + m,,m = m.(I- 12) + lm .

be employed. The use of such procedures to directly integrate These two equations, which do not involve I., or in,,, form a
the equations inevitably introduces small errors. Such errors
thex in'qutin slutiib ivntduens e slluros S crors basis for finite difference equations that calculate I and m at the
'mix in' multiple solutions even when those solutions are Incom-

patible with the boundary conditions. Instability of the numeri- - cell from values of I and in at cells.

cal scheme seems responsible for the fact that such errors even-
tually dominate the recovered solution. A scheme that is repre-

sentative of our various trials at direct integration is outlined.
We transform our equations into finite-difference equations + + +

by using a three-point formula for the differentials of I and in. If
I(i,j) and m(ij) are the values o I and m at the (i,j)th pixel in +
the image, then at this pixel we use the finite-difference formulas,

I + .,)-I(i-l,j) The results obtained with the above integration scheme,
2 together with many variations of it, are poor. Accurate values

I.. = I(i + lj)+ I(i - 1.j)- 21(i,j) for I and m are obtained only within approximately five to ten
rows of the known boundary. This is the case for noise-free

I(+ +lj_+ 1)+I_(i_-.j - image data. These results can be understood by examination
of the finite-difference equations. The explicit expressions for

+.. . . + I and in at the (-) cell are functions of the differences of I

and in at the (+) cells. Such schemes ae usually numerically

and similar formulas for the other differentials. If we consider unst e mkn sepsby-se n e isleiWhle
the x imae ptch entredon te (~j~t pielunstable, making step-by-step integration impossible. %%'ile

the 3 x 3 image patch centered on the (i,j)tb pixel, the failure to find a stable numerical scheme does not imply

i-1 i j+l that one does not exist, our difficulty highlights the problem
of finding numerical schemes, based on differential models, to

i+1 0 0 propagate information from known boundaries. (One wonders
whether nature experienced the same difficulties when designing

i 0 0 0 the human vision system.)
Although the alternative to direct integration, a relaxation

i-1 0 0 0 procedure to solve the equations, seems to offer relief from the
numerical instability of direct integration, it nevertheless poses

we could hope that the two finite difference equations. relating its own problems. The approach we used parallels the one in

the eighteen values of I and yn on the natch, could be solved I31 for solving the image irradiance equation when the surface

explicitly for I(i + 1,j + 1) and m(i + 1.j + I), (the (f) cell). albedo and illumination conditions are known. For each image
Such a solution would allow I and i at the (&,) cell to be cal- pixel we form three error terms: the residuals associated with

culated from the I's and i's at the (o) cells. Starting at some the two surface-orientation-to-image-irradiance equations, and
boundary at which we know I and in at the (o) cells, we can with the one surface continutiy equation. Minimizing the sum

move along the image's row anti then along the successive rows, of the errors over the whole image with respect to I and m at
calculating I and in ats the (k) cell. Ilowever. examination of the each pixel produces an updating rule for I and in at each pixel.
surface-orientation-to-image-irradiance equations shows that we Given an initial solution, i.e.. assignment of values for I and in

cannot solve these equations explicitly for I,, and in,, and that, at each pixel, a relaxtion scheme, like the one described, is useful

consequently, we cannot obtain finite-difference equations that only if it converges. While the constraint imposed by the under-

are explicit in the I and in of the (A-) cell. lying model is most important in ensuring convergence, the im-
We avoid this difficulty by combining the two surface- porlance of a good initial solution for a relaxation method can-

orientation-to-image-irradiance equations into one and using sur- not be overemphasized. Simplifying the two partial differential

face continuity to provide the additional equation. iemoving I,, equations (by using additional assumptions) provides a method
ani In,, f:'om the differential equations, we have for obtaining an good initial solution.

The spherical approximation assumes that we are viewing
n(bI,., - "I,,,) + /l(tmu,, - -y ,) ~ \(Ai'U. - -ii1,) a spherical surface. This implie: , =I Om. , and I, i n1.

Surface continuity requires that 0,4 = ,. from which it namely, constant curvature that is independent of direction.

follows that Provided that u and v are small compared with z, then I,
O,m. - 0 ant I . - in,. For this cae, the partial differential

I,(I - M 2
) + mIm in,( - 12) + 1,lm equations become relationships between image irradianee and its
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derivatives, on the one hand, and the components of the surface Suppose we know the depth z0 at scene coordinates
normal, on the other: (Zo,V, zo), corresponding to (uo, vo) in the image. For the point

(z0 + Az, Ito + AV) we use the approximation
I-r

2  it

8z
Im Z(Zo + A, Yo + AV) z(zo,yo)+ Ax +-2 - =o.S Aio'..o

Similarly,

The spherical-approximation results for perspective projec- a'
tion are similar to those Pentland was able to obtain 121 for z(z, - Az,V - AV) :(z,.,,)-AZ -Y
orthographic projection through local analysis of the surface. azl,,,, d ,,
Besides providing a mechanism for obtaining an initial solution
for a relaxation-style algorithm, they allow surface orientation
to be estimated by purely local computation. Such an estimate w a hl e,+

will be exact when the surface is locally spherical. zx,ytV=Z(Zo, VO) + i'i ,,.+
The results of our experiments with relaxation procedures 2 L1 0 -:,1

are easily summarized: the relaxation procedures were not con- + ( -oz + a- )
vergent. While such nonconvergence is hardly unusual, the 2 8y L.O ay ,,?Y
reasons for failure, however, are instructive. The residuals as- sing the perspective transformation u and v
sociated with both the surface-orientation-to-image-irradiance toinemoe xersdeyive tan
equations, and the surface continuity equations remain small
during the relaxation, even when the solution is starting to z(uIt,) = Z(uo,vo)X
diverge. Of course the residuals are not as small as they are 2 0o 3+
when on the verge of solution, but they are small enough to f + uo( Oo, + )+V,( +
make one believe that a solution has been obtained, particularly 2f + uj( e + ' )+ -+ "
when the image is not noi'--free. Apparently the equations are Zoo ON) o.,
insensitive to particular values of I and m, being more concerned
with the values of l_1l ,, and mi. As with direct integration, As u= --- and . - w
relaxation models need boundary conditions to select a particular reconstructing the surface in scene coordinates from the values
solution. We used various boundary conditions in our relaxation of surface orientation in image coordinates.
experiments, but it is difficult to believe that a model, apparently
insensitive to surface orientations, could be overly influenced by
the surface orientations at a boundary. 7 CONCLUSION

Our two approaches, direct integration and relaxation, have
not yielded a computational solution to the problem of recover- In this formulation of the shape-from-shading task, we have
ing surface orientation from shading. The attractiveness or lo- eliminated the need to know the explicit form of the scene
cal computation is clear: it has neither numerical instability nor radiance function by introducing higher-order derivatives into
divergent behavior, but the cost it imposes is that assumptious our model. This model is applicable to natural scenery without
must, be made about surface shape. A compromise between any additional assumptions about illumination conditions orthe albedo of the surface material. Itowever, without a corn-
some local computation anti some information propagation may

an approach that is not overly restrictive in its assump- putational scheme to reconstruct surface shap from image ir-offer ranianceowehmayawonderoifowerhavereurrendiren tootmuch. ulph

tions about surface shape. llowever. the question needs to be radiance we may wonder if we have surrendereu too much. The
considered: Is the model undercons d Idifficulties of finding a computational scheme must induce oneconsderd: s te mdelnndrrostrained! Is shape recovery
dependent on information other than shading? What other in- to ask whether the model is underconstrained. lave we applied

formation (that is obtainable from the image), is necessary to too few restrictions, thereby making shape recovery impossible?
Notwithstanding the general concern about underconstraint ofenable the construction of effecti"e shape-recovery algorithms! the model, the numerical difficulties encounted makes local com-

putation of scene parameters attractive. Information propaga-
tion methods must always cope with the problem or accumulated

6 RECONSTRUCTION OF THE SURFACE errors. In our model, however, to achieve local computation we
SHAPE must make assumptions with regard to surface shape. WVhat

Surface orientation is not the same as surface shape. other information, besides shading, do we need to know if we are
Ilowever, once we have obtained the surface orientation as a to recover surface shape? Can we find moderate restrictions that
function of image coordinates, i.e., Au, v) and r(u, v), we can use allow mostly local computation of the surface shape parameters?
these to reconstruct the surface shape in the scene coordinates We are actively engaged in the pursuit of such procedures.
X.Y.Z. We derive a suitable formula.

. . .. .. ... B -. .. ... .
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FRACTAL-BASED DESCRIPTION OF NATURAL SCENES

Alex Pentland
Artificial Intelligence ('enter

SlRI International
33:3 Ravenswood Ave., Menlo Park, ('A. 94025

ABSTtRACT
This paper addresses the problems of (I) representing

natural shapes such as mountains, tree- and clouds, and (2)
computing such a description from image data. In order to
solve these problems we must be able to relate natural surfaces

to their images: this requires a good model of natural surface
shapes. Fractal functions are good a choice for modeling natural
surfaces because (I) many physical processes produce a fractal
surface shape, (2) fractals are widely used as a graphics tool for
generating natural-looking shapes, and (3) a survey of natural
imagery has shown that the 3-D fractal surface model, trans-
formed by the image formation proces, furnishes an accurate
description of both textured and shaded image regions. This
characterization of image regions has been shown to be stable
over transformations of scale and linear transforms of intensity.

Much work has been accomplished that is relevant to com-
putitg 3-) information from the image data, and the computa-
tion of a 3-1) fractal-based representation from actual image data
has ben demonstrated using an image of a mountain. This ex-
ample shows the potential of a fractal-based representation for
efficiei*tly computing good 3-1) representations of natural shapes,
incluing such seemingly-difficult cases as mountains, clumps of

leaves and clouds.
Figure 1. Fraital-based models of natural shapes, by Mandelirot

and Vss 0I .

1. INTRODUCTION Iurthermore. how can we extract 3-1) information from
the ip:tie of a te\iured surface when we have no models that

Thiis paper adidresses two related problems: (11 representing edescrilt natiiral surfaces and how they evidence themselves in
natural shapes such as mountains, trees and clouds, and (2) hi ige? The lack of such aa-I) model has generally restricted
com puting such a description from im age data. The first step i ag ac ofscripions t b e l ho es a tal ret r ed

towards solving these problems, it appears, is to obtain a model iig e ie tisit sutoabeig dl of atiiral Auresof t he image iiiitntsity surface. A good moulel of nat tiral sunrfaces
of natuiral surface shapes. The task of finding such a model is together wit i tle physics of image formation would trovite tie
extremely important to computer vision because we face prob-
lems that seem impossible to address with standard descriptive i alt ecesay fo relatig to surfacen o the

imiages. T[le abtility to relate intage to surface can provide thetechniques. [low, for instance, should we describe the shape necessary leverage for dealing appropriately with the problents of
of leaves on a tree? Or grass? Or clouds? When we attempt fiditg a good representation for natural surfaces anti conputitug
to descibe such common, natural shapes using standard shape- fitch a desriptitn front the image data.

primitive representations, the result, is an unrealistically compli- ucvhn shaptcfrom-shading d2223] atd srface-interpolation

rated r tdel of something that, viewed introspectively, seems Itethods 121] are limited by the lack of a :3-i) model of natural
ve'cry sitple, surfaces, (urrentl v all such methods employ the heuristic of

.s.nootliness to relate neighboring points on the surface. Such
' The research reported herein was supported by the Defense heuristics are applicable to many man-made surfaces, of course.

Advanced Research Projects Agency under Contract No. MDA hut are demonstrably untrue of most natural surfaces. lit order
903-83-C-0027; this contract is monitored by the U. S. Army to applv such techniques to natural surfaces, therefore, we must
Engineer Topographic Laboratory. Approved for public release, find a heuristic that is true of natural surfaces. Finding such a
distribution unlimited. heuristic requires recourse to a 3-1) model of natural surfaces.

C- I



Fractal functions seem to provide such a model of natural sion, may be illustrated (and rouebly defined) by the examples

surface shapes. Fractals are a novel class of naturally- (I) of measuring the length of an island's coastline, and (2)
arising functions, discovered primarily by Benoit Mandelbrot. measuring the area of the island.
Mandelbrot and others 11,2,41 have shown that fractals are To measure the length of the coastline we might select a

found widely in nature and that a number of basic physica measuring stick of length X and determine that n such measuring
processes, such as erosion and aggregation, produce fractal sur- sticks could be placed end to end along the coastline. The length

faces. Because fractals look natural to human beings, much of the coastline is then intuitively nX. If we were measuring the

recent computer graphics research has focused on using fractal area of the island, we could use a square of area X' to derive
processes to simulate natural shapes and textures (see Figure I), an area of M.\

2 , where m is the number of squares it takes to

including mountains, clouds, water, plants, trees, and primitive cover the island. If we actually did this, we would find that both
animals [3,4,5,6,71. Additionally, we have recently conducted a of these measurements vary with ), the length of the measuring
survey of natural imagery and found that a fractal model of instrument - an undesirable result.

imaged 3-D surfaces furnishes an accurate description of both In these two examples the length X is raised to a particular
textured and shaded image regions, thus providing validation of power: the power of one to measure length, the power of two
this physics-derived model for both image texture and shading to measure area. These are two examples of the general rule of

[19]. raising X to a power that is the dimension of the object being

measured. In the case of the island, raising X to the topological

dimension does not yield consistent results. If, however, we

2. FRACTALS AND THE FRACTAL MODEL were to use the power 1.2 instead of 1.0 to measure the length,

and 2.1 instead of 2.0 to measure tLe area, we would find that

During the last twenty years, Benoit B. Mandelbrot has de- the measured length and area remained constant regardless of

veloped and popularized a relatively novel class of mathematical the size of the measuring instrument chosen.* The positive real
functions known as fractals [I,41. Fractals are found widely number D that yields such a consistent measurement is the

in nature [I,2,41. Mandelbrot shows that a number of basic fractal dimension. D is always greater than or equal to the

physical processes, ranging from the aggregation of galaxies to topological dimension.
the curdling of cheese, produce fractal surfaces. One general The most important lesson the work of Mandelbrot and

characterization is that any process that acts locally to produce others teaches us is the following:
a permanent change in shape will, after innumerable repetitions, Standard notions of length and area do not produce

result in a fractal surface. Examples are erosion, turbulent flow consistent measurements for many natural shapes: the

(e.g., of rivers or lava) and aggregation (e.g., galaxy formation, basic metric properties of these shapes vary as a func-
meteorite accretion, and snowflake growth). Fractals have also tion of the fractal dimension. Fractal dimension, there-
been widely and successfully used to generate realistic scenes (see fore, is a necessary part of any consistent description of

Figure I), including mountains, clouds, water, plants, trees, and such shapes.
primitive animals [3,4,5,6,7]. This result, which could almost be stated as a theoi,-o,

Perhaps the most familiar examples of naturally occurring demonstrates the fundamental importance of knowing the " ac-

fractal curves are coastlines. When we examine a coastline (as tal dimension of a surface. It implies that any description om a

in Figure I). we see a familiar scalloped curve formed by in- natural shape that does not mc!;: '- the fractal d-'ension cannot

numerable bays and peninsulas. If we then examine a finer-scale be relied upon to be correct a , ', than one - Je of examina-

map of the same region, we shall again see the same type of tion.

curve. It turns out that this characteristic scalloping is present Fractal Brownian functions. 'virtually all the fractals

at lill scales of examination (2[, i.e., the statistics of the curve encountered in physical models have two additional properties:

are invariant with respect to transformations of scale. This fact (I) each segment is statistically similar to all others; (2) they are
causes problems when we attempt to measure the length of the statistically invariant over wide transformations of scale. Motion

coast line, because it turns out that the length we are measur- of a particle undergoing Brownian motion is the canonical ex-

ing depends not only on the coastline but also on the length of ample of this type of fractal. The discussion that follows will be
the measurement tool itself [21! This is because, whatever the devoted exclusively to fractal Brownian functions, a gencraliza-

size measuring tool selected, all of the curve length attributable (ion of Brownian motion.
to features smaller than the size of the measuring tool will be A random function 1(z) is a fractal Brownian function if

miisrd. Mandelbrot pointed out that, if we generalize the notion for all x and Ax
of dimension to include fractional dimensions (from which we

get the word "ractal"), we can obtain a consistent measurement Pr(!? x + Az)- (Z) < i Fly) (I)
of the coastline's length. )_l < Il)

The definition. A fractal is defined as a set for which where I(y) is a cumulative distribution function [l1. The fractal
the llaiumlorT-Hesicovich dimension is strictly larger than the
topological dimension. Topological dimension corresponds to This example is discussed at greater length in Mandelbrot's

the standard, intuitive definition of "dimension." llausdorff- book, "Fractals: Form, Chance and Dimension." The empirical

Ilesicovich dimension D, also referred to as the fractal dimen- data are from Richardson 1981.
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dimension D or the graph described by B(z) is the image data. The fact that the fractal dimension corresponds
closely to our intuitive notion of roughness shows the impor-

D = 2 - II (2) tance of tile measurement: we can now discover from the image
data abethewr the 3-I) surface is rough or smooth, isotropic or

If II = 1/2 and f'(y) is a zero-mean Gaussian with unit variance, ( te 3-n suow, i eech k of ioth th
then tB(z) is the classical Brownian function. This definition ani-tropic. We can know, in effect, what kind of cloth the

then11() i th clssicl Bownan uncion.Thi deiniion surface wa.s cut from. The fact that the fractal dimension also
has obvious extensions to two or more topological dimensions. scibes t baoic metric tiso the imesiurfas

The fractal dimension of a fractal Brownian function can also dcie iebscmti rpriso h mgdsraei
he frctal d imens Fouaifractl p ow nispectra s u tn sca alo further indication that it is a critical element in any consistent

be mea." ured from its Fourier power spectrum, as the spectral

density of a fractal Brownian function is proportional to f-2H- . representation of natural surfaces.

Discussion of the rather technical proof of this fact may be found
in [I]. 2.2 Applicability Of The Frctl Model

The fractal dimension of a surface corresponds roughly to An implication of the fractal surface model is that the image
our intuitive notion of jaggedness. Thus, if we were to generate intensity surface is itself fractal and vice versa. This is be-
a series of scenes with the same 3-D relief but increasing fractal cause image intensity is primarily a function of the angle between
dimension 1), we would obtain the following sequence: first, a the surface normal and the incident illumination: thus, if the
Oat plane (1) 2). then rolling countryside (D 2.1), a worn, image intensities satisfy Equation (1), then (for a homogeneous
old mountain range (D _ 2.3), a young, rugged mountain range surface) the angle between surface normal and illuminant must
(D 2.5), and finally a stalagmite-covered plane (D - 2.8). also and, integrating, we find that the 3-D surface is a spatially

The fractal dimension of a surface is invariant with respect isotropic fractal.
to transformations of scale, as Az is independent of II and A method of evaluating the usefulness of the fractal sur-
F"(y). The fractal dimension is also invariant with respect to face model, therefore, is to determine whether or not images of
linear transformations of the data and thus it remains stable natural surfaces are well described by a fractal function. To
over smooth, monotonic transformations, evaluate the applicability of the fractal model, we first rewrite

I'Aluation (I) to obtain the following description of the manner
2.1 Fractals And The Imaging Process in %hich the 'econd-order statistics of the image change with

Before we can use a fractal model of natural surfaces to scale:

help ts understand images, however, we must determine how E(IdJAu I)IIAzJ - U - ElId/ti) (3)

the imaging process maps a fractal surface shape into an image where k is a constant and E(dl..,) is the expected value of
intensity surface. The mathematics of this problem is difficult the change in intensit. over distance Ax. Equation (3) is a
and no complete solution has as yet been achieved. Nonetheless, hypot le-ized relation among the image intensities a hypothesis
simulation of the imaging process with a variety offractal surface that we may test statistically, If we find that Equation (3) is
models cam provide us with an empirical answer -- i.e., that true of the image intensity surface and the viewed surface is
images of fractal surfaces are themselves fractal as long as the homogeneous anti continuous then we may conclude that the 3-
fractal-geterating function is spatially isotropic [19]. It is worth I) surface is itself fractal. It is an important characteristic of
noting that practical tract al-generation techniques, such as those the fractal model that we can determine its appropriateness for
used in computer graphics, have had to constrain the fractal particular image data because it means that we can know when.
generating finction to be isotropic so that realistic imagery could and when riot, to use the model.
be obtained [3. To evaluate the suitability of a fractal model for natural

Real imv:es (o not, of course, appear fractal over all pos- textures, the homogeneous regions from each of six images of
sihle scale, ofexamination. The overall ,ize of the imaged surface nitural scetes were densely sampled. In addition. twelve tex-

Iac art upper limit on the range of scales for which the surface tires taken from ltrolatz [8] were digitized and examined (see
shape appears to be fractal, and a lower limit is set by the size IFigure 3). The intensity values within each of these regions were
of the surface's constituent particles. In between these limits, then approximated by a fractal Brownian function and the ap-
however. e ma ay use Equation (I) to obtain a useful description proxitnation error observed.
of t lie suirfice. [or t lie ma jority of the textures examined (7 7 '('), the model

Simutlation shows that the fractal dimension of the physical described tlie image data accurately (see [19] for more detail).
surface dictate, the fractal dimension of the image intensity Itt I5Yi of the cases the region was constant except for random,
surface: it app,'irs that the fractal dimension of the image is zero-mean pert urbations: consequently. the fractal function cor-
a logarithmic function of the fractal dimension of the surface. rectly approximates the image data, although the fractal dimen-
If we a-unic that the surface is homogeneous, therefore, we sion was equ al to the topological dimension and thus the data's
c:n etinate the fractal dimension of the surface by measuring dimension is technically not "fractional." The fit was poor in
the fraclal dimension of the image data. Even if the surface is only 8('( of the region% examined and. in many of these cases, it
not hornogeneou . we can still infer the fractal dimension of the appeared that the image digitization had become saturated.
surfaci fromn imaged surface contours and bounding contours, The fact that the vast majority ofthe regions examined were
by use of Nlandelbrot's results, quite well approximated by a fractal Brownian function indicates

What we have developed, then, is a method for inferring that the fractal surface model will provide a useful description of
a basic property of the 3-D surface (its fractal dimension) from natural surfaces and their images. Fractal Brownian functions
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do not, of course, account for such large-scale spatial structure
as those seen in the image of a brick wall or a tiled floor. Such
structures must be accounted for by other means.

3. INFERRING SURFACE PROPERTIES

Fractal functions appear to provide a good description of . I
natural surface textures and their images; thus, it is natural -
to use the fractal model for texture segmentation, classification
and shape-from-texture. The first four headings of this section
describe the research that has been performed in this area, and
indicate likely directions for further research. b

Fractal functions with H - 0 can be used to model smooth
surfaces and their reflectance properties. For the first time,
therefore, we can offer a single model encompassing both image
shading and texture, with shading as a limiting case in the
spectrum of texture granularity. The fractal model thus allows
us to make a reasonable and rigorous definition of the categories C d

"texture" and "shading," thus enabling us to discover similarities
and differences between them. The final heading of this section
briefly discusses this result.

3.1 An Example Of Texture Segmentation Figure 2. San Francisco Bay, and its texture segmentations.

Figure 2(a) shows an aerial view of San Francisco Bay. This which is a property of natural surfaces that has been shown to
image was digitized and the fractal dimension computed for e invariant w ith repect to transformations of scale 121.
each 8 X 8 block of pixels. Figure 2(b) shows a histogram of l'he fact that the fractal description of texture is stable
the fractal dimensions computed over the whole image. This with respect to scale is a critically important property. After all,
histogram of fractal dimension was then broken at the "valleys" consider: how can we hope to compute a stable, viewer-
between the modes of the histogram, and the image segmented independent representaton of the world if our informa-
into pixel neighborhoods belonging to one mode or another.* tion about the world is not stable with respect to scale?
Figure 2(c) shows the segmentation obtained by thresholding This example of texture property measurement reiterates what
at the breakpoint indicated by the arrow under (b): each pixel we observed earlier, i.e.. the fact that the fractal dimension of
in (c) corresponds to an 8 X 8 block of pixels in the original the surface is ,icce.-aryto any consistent description of a natural
image. As can be seen, a good segmentation into water and land surface.
was achieved - one that cannot be obtained by thresholding on
image intensity. 3.2 A Comparison With Other Segmentation Techniques

This image was then averaged down, from 512 X 512 pixels
into 250 X 2"50 and 128 X 128 pixel images, and the fractal To obtain an objective comparison with previously estab-
dimension recomputed for each of the reduced images. Figures lished text tre segmentation techniques. a mosaic of eight natural
I (d) and (e) illtstrate the segmentations produced by using textures taken from lBrodatz 1 1 was redigitized. The digitized
the anme breakpoint as had been employed in the original full- texture mosaic, shown in Figure 3. was constructed by Laws

resolution segmentation. These results demonstrate the stability [9.101 for the purpose of comparing various texture segmentation
of the fractal dimension measure across wide (4 : i) variations procedures. The text ures that comprise this data set were chosen
in scale, to be as visually *similar as possible: gross statistical differences

Several other images have been segmented in this manner were removed by mean-value- and histogram-equaliration.

[191. In each case a good segmentation was achieved. The Segment at ion performance for these data exists for several
computed fractal dimension, and thus the segmentation, was techniques and. although differences in digitization complicate
found to be stable over at least 4 : 1 variations in scale; most were any comparisons we might wish to make. Laws's performance
stable over a range of 8 : 1. Stability of the fractal description figures nevertheless serve as a useful yardstick for assessing per-
is to be expected, because the fractal dimension of the image is formance on this data.
directly related to the fractal dimension of the viewed surface, For this comparison simple orientational information was

incorporated into the fractal description: the fractal dimension" N o a tte m p t w a s m ad e to in c o r p o ra te o rie n ta tio n a l in fo rm a tio nw a l c at d s p r e y f o th x a n V c o di t s . T e w .was* calculat.'d separately for the : and y coordinates. The two-
into measurement of the local fractal dimension, i.e., differences parameter fractal egmenter yielded a theoretical classifiation
in dimension among various image directions at a point were accuracy of 91.c7. This compares quite favorably with correla-
collapsed into one average measurement. tion techniques ]11,121 reported by Laws as attaining 651c ac-

C-4



1 vtc text ure gradient that is due to increasing distance between
the viewer and the surface. These two phenomena are indepen-

If 4dent in that they hiave separate causes. Thus, they can werve to
confirm each other i.e., if projection foreshortening is used to

tsimate surface tilt. that estimate is independently confirmed
if there is a texture gradient of the proper magnitude and same

I . . direction 117.18]. We may be confident our estimate is correct

~V ~ whetn uch inde-pendent confirmation is found.
lThe fractal dimension found in the image appears to be

nearly independent of the orientation of the surface (by virtue
of independence with respect to scale): therefore fractal dimen-
sion cannot be used to measure surface orientation. Projection

Figure 3. The Brodatz textures used for comparison. foreshortening doe',, however, affect the variance of the distribu-

curacy, as well as with co-occurrence techniques (13,14] reported tion I(y) associated with the fractal dimension (see Equation

to be 72% accurate. This superior performance was achieved (1)). Foreshorlening affects Vor(F(y)) in exactly the manner it

despite the large number of texture features employed by the affects the (listribution of tangent direction.

other methods. lhu,, to etimate surface orientation, we might assume that

The simple two-parameter fractal segmenter even compares the surface texture is isotropic and estimate surface orienta-

well with Laws's own texture energy statistics; even though his tion on the b:ais of previously derived results [18]. While this

,,egmentation procedure included more than a dozen texture often works [191. the necessity of assuming isotropy is a serious

statistics that were optimized for the test data, its theoretical shortcoming of this technique. An important new result, there-

segmentation accuracy was only 3% better. Thus, the results of fore. is that we may in part cure this problem by observing the

this comparison indicate that fractal-based texture segmentation fractal dimensions in the z and y directions. If they are unequal

will likely prove to be a general and powerful technique (for more we have prima farie evidence of anisotropy in t he surface tex-

details, see [19]). ture. because fractal dimension is unaffected by projection.
Iowever a foreshortening-derived estimate of surface orien-

tation is produced, we may still seek confirmation of it by
3 Relationship To Texture Models mea.uring the perspective texture gradient: if confirmation is

The fact that the fractal dimension of the image data can be found, we may be confident of our estimate. Such a gradient
measured by using either co-occurrence statistics in conjunction appears in Figure 2: the houses dwindle in sire with increasing
with Equation (I), or by means of the Fourier power spectrum, distance from the viewer. Initial results, detailed in [P1. indi-
suggests one interesting aspect of the fractal model: it highlights cate that perspective texture gradients can be inferred from the
a formal link between co-occurrence texture measures [13,14] locally computed fractal dimension.
and Fourier techniques [15,16,17]. The mathematical results This two new results, i.e.. the ability to obtain evidence of
Mandelbrot derives for fractal Brownian functions show that the surface texture anisotropy and the measurement of the perspec-
way interpixel differences change with distance determines the tive texture gradient, are extremely important because they
rate at which the Fourier power spectrum falls off as frequency offer a way to make shape-from-unfamiliar-texture techniques
is increased, and vice versa. sufliciently reliable so as to be useful. Development of these

Thus, it appears that the fractal model offers potential for techniquws, therefore, constitute an important task for future
unifying and simplifying the co-occurrence and Fourier texture research.
descriptions. If we believe that natural surface textures and
their images are fractal (as seems to be indicated by the pre- 3.5 Shading And Texture
vious results). then the fractal dimension is the most relevant
parameter in differentiating among textures. In this case we Fractal functions with ! 0 can be used to model smooth
would expect both the Fourier and co-occurrence techniques to surface- and their reflectance properties accurately. When !1

provide reasonable text ure segmentations, as both yield sufficient 0. the surface is locally planar, except for small, random %ara-

information to determine the fractal dimension. The advantage lions described by the function F(y) in Equation (I). If we as-
of the fractal model would be that it captures a simple physical sune that incident light is reflected at the angle of incidence and

relationship underlying the texture structure - a relationship me make the variance of F(y) small relative to the pixel sire. the

lost with either of the other two characterizations of texture. surrace will be uirrorlike. If. on tte other hand, the variance of

Knowledge of the fundamental physical principle can result in I,() is large relative to the pixel size, the surface will become

both increased computational efficiency and further insight, more l,atbertian.
The fractal model, therefore, is a single model that can ac-

3.4 Shape From Texture count for both image shading and texture, with shading cor-
responding to the limiting value of II. The fractal model thus

There are two ways surface shape is reflected in image tex- allows us to make a reasonable and rigorous definition of the cat-
ture: (I) projection foreshortening, a function of the angle be- egories "texture" and "shading," in terms that can be measured
tween the viewer and the surface normal, and (2) the perspec- by using the image data. One important goal of future research
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will be to discover similarities or differences between these two instead construct a shape generator that uses a random number
categories; initial results indicate that local shape-from-shading generator to produce a surface shape description (I shall shortly
results [261 can be generalized to include shape-from-texture. describe how to do this). If we were to run this shape generator

for an infinite period, it would eventually produce instances of
every shape within a large class of shapes. If the generator were

4. COMPUTING A DESCRIPTION so constructed that the class of shapes produced was exactly the
set of "all hypotheses" about shape, then the program for the

Current methods for representing the three-dimensional shape generator, together with a the program for the random
world suffer from a certain awkwardness and inflexibility that number generator, would comprise a description of the set of all
makes them diflicult to envisage as the basis for human- shape hypotheses.
performance-level capabilities. They have encountered prob- The shape generator illustrates how the notion of con-
lems in dealing with partial knowledge or uncertain information, strained chance may be used to obtain a compact description
and they become implausibly complex when confronted with the or an infinite set of shapes. By changing the constraints that
problem of representing acrumpled newspaper, aclump of leaves determine how the output of the random number generator
or a puffy cloud. Furthermore, they seem ill-suited to solving the is translated into shape, we can change the set of shapes
problem of representing a class of objects, or determining that described; specifically, we can introduce constraints that rule
a particular object is a member of that class. out some classes of shape and thus restrict the set of shapes that

What is wrong with conventional shape representations? are described. The ability to progressively restrict the set of
One major problem is that they make too much information shapes described allows us to use the constrained-chance shape
explicit. Experiments in human perception [211 lead one to gent rator as the basis for induction, rather than being forced to
believe that our representation of a crumpled newspaper (for use the explicitly enumerated set of all shape hypotheses.
instance) is not accurate enough to recover every - value; rather, The process of computing a "constrained chance descrip-
it seems that we remember the general "crumpledness" and afew tion" is straightforward. We use image data to inter (using
of the major features, such as the general outline. The rest of knoaledge of ihe physics of image formation) constraints on
the newspaper's detailed structure is ignored; it is unimportant, the shape, and then introduce those constraints into the shape
random. generator. The end result will be a programlike descriptinn that

From the point of view of constructing a representation, the is capable of producing all the shapes that are consistent wi-h
only important constraints on shape are the crumpledness and the image data; i.e., we shall have a description of the shapes
general outline. What we would like to do is somehow capture confirmed by the image data. This, then. is the type of descrip-
the notion of constrained chance, that is, the intuition that "a tion we %anted: a description of shape that contains the impor-
crumpled newspaper has z, and : structural regularities and taut structurl regularities that can be inferred from the image
the rest is just variable detail," thus allowing us to avoid dealing (e.g.. crumpledness, outline), but one that leaves everything else
with inconsequential (random) variations and to reason instead as variable, random.
only about the structural regularities. Some people are already doing this. Something very

much like thi" constrained-chance representation is already being
wilelv utilie-' in the computer graphics community. Natural-

Ilow shall we go about computing such a "conf ned looking shapes are produced by a simple fractal program that
chance' description'* Let us consider the problem formally and recursively ubdivides the region to be filled, introducing ran-
see where that leads us. The process of computing a shape dum jaggedness of appropriate magnitude at each step 1.51.
description (given some sensory data) seems best characterized The jaggedness is determined by specifying the fractal dimen-
as attenpting to confirm or deny such hypotheses as "shape z sion, The shapes that can be produced in this manner range
is consistent with these sense data." Computation of a shape from planar surfaces to mountainlike shapes, depending on the
description, therefore, seems to be a problem in induction [20]. fractal dimenion. ('urrent graphics technology often employs

If. naiely. we try to use an inductive method, we start fractal shape generators in a more constrained mode; often the
with the set of all possible shape hypotheses; we then attempt overall, gete-ral shape or the boundary conditions are specified
to ainnow the set down to a small number of hypotheses Iforvhand lhu-, a scene is often constructed by first specify-
that are confirmed by the sensory data. 'he "set of all ing nitial constraints on the general shape, and then using a
shape hypotheses." however, is much too large to work with. frctal shape generator to fill in the surface with appropriately
('oisequeutly. we must take a slightly different tack. jagged (or smooth) details. The description employed in such

graphics sist ts, therefore, is exactly a constrained-chance
Using the notion of constrained chance. Rather than descripion: important details are specified. and everything else

atemptig to eimmerate "all shape hypotheses" explicitly, let us is left unspecified except in a qualitative manner.

'he term "reprisentat ion' will be used to refer to the scheme This type of description bears a close relationship to surface
interpolation omethods (e.g., ]24J). Typically. such schemes fit a

for representing shapes, while the term "description" will be sthr ftat atisies whaeve T uily conditions are

reserved for specific instances. Thus, one can compute a descrip- available. The initial boundary conditions, together with the

tion of some object; it will be a member of the class of shapes i la tin ition con ditis, tlehrt h o h

that can be accounted for within the representation. interpolation function, constitute a precise lescription of
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the surface shape. Such schemes are limited to smooth sur-
faces, however, and therefore are incapable of dealing with most
natural shapes. In contrast, a fractal-based representation allows A
either rough or smooth surfaces to be fit to the initial boundary
conditions, depending upon the fractal dimension. This method
at description, therefore, is quite capable of describing most
natural surfaces - and that is why the graphics community is
turning to the use or fractal-based descriptions for natural sur-
faces.

In order to make use of this type of description it is neces-
sary to be able to specify the surface shape in a qualitative
manner, i.e., how rugged is the topography? This specification - -

of qualitative shape can be accomplished by fixing the fractal
dimension. The fact that we have recently developed a method
of inferring the fractal dimension of the 3-D surface directly from
the image data means that we are now able, for the first time,
to actually compute a fractal or constrained-chance description

of a real scene from its image.Not only terrestrial topography has been modeled by use
of a constrained-chance representation, but also clouds, ponds, e if

riverbeds, snowflakes, ocean surf and stars, just to name a few
examples [1,3,4,5,6,7]. Researchers have also used constrained-
chance generators to produce plant shapes [1,4,6]. A very Figure 4. An example or computing a constrained-chance descrip-
natural-looking tree can be produced by recursively applying lion.

a random number generator and simple constraints on branch- simple con'traints are sufficient for computing a good* 3-1) rep-
ing geometry. In each case a random number generator plus a resentation of the peak.
surprisingly small number of constraints can be used to produce
very good models of apparently complex natural phenomena. 4.3 What Do We Accomplish With This Approach?
Thus, there is hope for extending this approach well beyond the
domain of land topography. Let's consider the problems cited above:

(I) The problem of representing a complex shape, such as
4.2 An Example Of Computing A Description a crumpled newspaper. The problem with a shape-primitive

represenlation such as surface normals, voxcels or generalized
Figure 4 illustrates an actual example of computing such cylinders is that the resulting description seems hopelessly com-

a description. Figure 4(a) is an image of a real mountain. Let plex. Because the constrained-chance representation allows us
us suppose that we wished to use the image data to construct to deal only w ith the structural regularities and to ignore in-
a three-dimensional model of the rightmost peak (arrow), per- consequctial details, the problem can become much simpler.
haps for the purpose of predicting whether or not we could climb Thus, for instance, the graphics community has found that
it. I will take the standard fractal technology used in the com- constrained-cliance fractal descriptions of complex objects (e.g.,
puter graphics community as the unconstrained "primal" shape a mountain) are q(ie compact and easy to manipulate. It also
generator, as it provides an apparently accurate model of a wide turns out that rumny previously simple things, such as describing
range of natural surfaces, a smooth plane. remain simple.

All that is necessary to construct a description of this moun- Iow does this representation function when we want to com-
tain peak is to extract shape constraints from the image and pule a description of a specific mountain, bush or other entity
insert them into the primal shape generator. The fractal dimen- from its image! Current "shape-from-z" research furnishes con-
sion of the 3-1) sturface is the principal parameter (constraint) straints on shape in a variety of forms: surface orientation (from
required by our fractal shape generator; roughly speaking, it texture [I, 18.25., shading [22.23,26]), relative depth (from
determines the ruggedness of the surface. The fractal dimen- motion 127.291, contour [29 - 31]), and absolute depth (from
sion of the 3-1) surface in the region near the rightmost peak stereo [32 31-t, egonolion [3,130]). It appears to be fairly
was inferred from the fractal dimension of the image intensity straightforward to mix each of the various flavors of constraint
surfaer in that area [19]. Constraint on the general outline into the %anilla-flaxor shape generator [3.5 ]. although significant
of this peak was derived from distinguished points (those with research remains to lie done. As more shape constraints are ob-
high curvature) along the boundary between sky and mountain. tained from the image, the description becomes more and more
These two constraints, together with the shape generator, are precise; i.e.. there is less and less chance in the description.
a 3-D representation of this peak; the question is: how good ...........-

a representation? A view of a 3-D model derived from this Rather primitive ray tracing, etc., was used to generate this
r.presentation is shown in Figure 4(b). It appears that these image; better code is being implemented.
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Event ually. only one shape satisfies all of the constraints, a clear and potentially useful definition of what it means to
Ilow complex could such a description become? The "recognize that x is an y."

constrained-chance representation would at worst be as complex Further, because we need only deal with the structural
as a two-dimensional array of z values representing the same regularities, this problem can become much simpler than it might
surface, because we could always use it to actually generate such at first appear. Taking the class "a mountain" to be defined by
an array of . values. As mentioned previously, experiments in fractal dimension and overall size (a definition that is actually
human perception indicate that our representations are usually sufficient to produce realistic mountain shapes) we can, for in-
not accurate enough to recover every - value. The representation stance, easily determine that the description computed by us for
of a particular object, therefore, is likely to be quite a bit simpler the mountain peak is in fact a description of part of a mountain
than a full depth map. a task that previously seemed to be nearly impossible.

(2) The problem of representing classes of shapes, such
as are referred to by the terms "a mountain," or "a bush."
Again, the ability to specify important structural details and 5. SUMMARY
leave the rest only qualitatively constrained allows simplification
of the problem. The definition of "a mountain," for instance, Fractal functions seem to provide a good model of natural
might reasonably consist entirely of a specification of the fractal surface shapes. Many basic physical processes produce fractal
dimension of the surface and a caveat concerning size. If we surfaces. Fractal surfaces also look like natural surfaces, and
are to judge by the results reported in the computer graphics so have come into widespread uses in the computer graphics
literature, the notion of representation by constrained chance community. Furthermore. we have conducted asurvey of natural
thus allows us. using only a few lines of code, to produce an imagery and found that a fractal model of imaged 3-D surfaces
accurate description of the class of shapes we label "mountains," furnishes an accurate description of both textured and shaded
or "bush." image regions.

(3) The problem of determining the set of appropriate Fractal functions, therefore, are useful for addressing the
descriptions when the shape is underconstrained by the sense related problems of representing complex natural shapes such as
data. The problem with standard shape-primitive repre- mountains, and computing a description of such shapes from
sentations ig that either we must generate all combinations of image data. The following describes the progress achieved
shape primitives consistent with the sense data (a very hard toward the solution of these problems.
problem), or pick a prototype and specify error bounds. The Computing a description. Characterization of image
problem with using prototypes plus error bounds is that we are texture by mcans of a fractal surface model has shed considerable
forced to overcommit ourselves by choosing the prototype; e.g., light on the physical basis for several of the texture techniques
there is something seriously wrong about describing a cube as CNITVre1iy in vine, and made it possible to describe image texture
"a sphere +O.r', even though the cube certainly fits within the in a manner that is stable over transformations of scale and
specified volume, linear transforms of intensity. These properties of the fractal

Because the constrained-chance representation allows surface model allow it to serve as the basis for an accurate image
details to he left constrained but unspecified, it allows us to deal segmentatiol procedure that isstable over awide range ofscales.
with insufFicient sense data by simply adding in those constraints Because fractal dimension is not affected by projection dis-
that cal Ie dleduced from the image data and committing our- tortion. its measurement can significantly enhance our ability
selves no further. The result is a programlike description that to estimate shape from (unfamiliar) texture. Specifically, it
can be analyzed and manipulated, does not overcommit itself as reeis that teasuretent of fractal dimension can provide (1)
to object shape, and allows examples of shapes consistent with evidette of surface texture anisotropy. and (2) an estimate of
the image data to be generated and examined. the perspect ive texture gradient. Both capabilities are extremely

(I) The problem of determining that a specific descrip- importan lecan-e ihiey provide a way to obtain independent
tion i a member of a more general class. Here the problem ionpirtat oe the pide a wyct oreainuindeped
with sh:pe-prinitive representations is that, there is so much confirmation of the aslmiptions on which prev iously-reported

variability among the descriptions of the members of a class such [181 tire techniques are based.

as "imountain" that a description of the class as a whole seems Representi g natural shapes. A constrained-chance
extremely difficflt, and determination of class membership even represenlation nodeled after the fractal techniques used by
more so. the graphics conmo!!ity seems useful for representing complex

,the problem of establishing class membership by us- natural shapes, such as a crumpled newspaper or a moan-
ing constrained-chance representations reduces to determining lain. The problem encountered when using conventional shape-
whether the constraints used to specify a particular description primitive represen tations to describe nattural surfaces is that the
are a libsct of thoe of the more general class. A determination resulting dcscriptiuu is often hopelessly complex. Iecause the
regairdiug cla s nembership is, therefore, exactly equivalent to constrained-clhance representation allows us to deal only with
determilning thebhr one program's output is a subset of another the structural regularities and to ignore inconseqenti.1 details,
programs onlluit. \Vhile such automatic proof is a difficult the prohblemi can become much simpler. Thus, for instance, the
problem. it is at least tractable and well-defined - unlike the graphics community has found that constrained-chance fractal
equivalent problem can be when using a shape-primitive rep- descriptions of complex objects (e.g.. a mountain) are quite corn-
resenlation. Thus, a constrained-chance representation allows pact and easy to manipulate. Similarly, the problem of repre-
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ABSTRACT
In such a domain it might be possible to discover

In this paper we offer a critical evaluation the generic criteria employed by the human visual

of the partitioning (perceptual organization) system and to duplicate human performance. One of

problem, noting the extent to which it has the main goals of the research effort described in

distinct formulations and parameterizations. W this paper is to find a set of generic rules and

show that most partitioning techniques can be models that will permit a machine to duplicate

characterized as variations of four distinct human performance in partitioning planar curves.

paradigms, and argue that any effective technique
must satisfy two general principles. We give II THE PARTITIONING PROBLEM: ISSUES
concrete substance to our general discussion by AND CONSIDERATIONS
introducing new partitioning techniques for planar
geometric curves, and present experimental results
demonstrating their effectiveness. Even if we are given a problem domain in which

explicit semantic cues are missing, to what extent
is partitioning dependent on the purpose,
vocabulary, data representation, and past

I INTRODUCTION experience of the "partitioning instrument," as
opposed to being a search for context independent

A basic attribute of the human visual system "intrinsic structure" in the data? We argue that

is its ability to group elements of a perceived rather than having a unique formulation, the

scene or visual field into meaningful or coherent partitioning problem must be paramaterized along a
number of basic dimensions. In the remainder ofclusters; in addition to clustering or

partitioning, the visual system generally imparts this section we enumerate some of these dimensions

structure and often a semantic interpretation to and discuss their relevance.

the data. In spite of the apparent existence
proof provided by human vision, the general A. Intent (Purpose) of the Partitioning Task
problem of scene partitioning remains unsolved for In the experiment described in Figure 1, human
computer vision. Furthermore, there is even some subjects were presented with the task of
question as to whether this problem is meaningful
(or a solution verifiable) in its most general partitioning a set of two-dimensional curves with

form. respect to three different objectives: (1) choose a
set of contour points that best mark those

Part of the difficulty resides in the fact locations at which curve segments produced by
that it is not clear to what extent semantic different processes were "glued" together;
knowledge (e.g., recognizing the appearance of a (2) choose a set of contour points that best allow
straight line or some letter of the English one to reconstruct the complete curve; (3) choose a
alphabet), as opposed to generic criteria (e.g., set of contour points that would best allow one to
grouping scene elements on the basis of geometric distinguish the given curve from others. Each
proximity), is employed in examples of human person was given only one of the three task
performance. It would not be unreasonable to statements. Even though the point selections
assume that a typical human has on the order of within a task varied from subject to subject, there
tens of thousands of iconic primitives in his was significant overlap and the variations were
visual vocabulary; a normal adult's linguistic easily explained in terms of recognized strategies
vocabulary might consist of from 10,000 to 40,000 invoked to satisfy the given constraints; however,
root words, and iconic memory is believed to be at the points selected in the three tasks were
least as effective as its linguistic counterpart. significantly different. Thus, even in the case of
Since, at present, we cannot hope to duplicate date with almost no semantic content, the
human competence in semantic interpretation, it partitioning problem is NOT a generic task
would be desirable to find a task domain in which independent of purpose.
the influence of semantic knowledge is limited.

The research reported herein was supported by the Defense Advanced Research Projects Agency under
Contract No. MDA 903-83-C-0027 and by the National Science Foundation under Contract No ECS-7917028.

D-1



B. Partitioning Viewed as an Explanation of Curve * Simply-connected (continuous) curves vs
Construction self-intersecting curves or curvet with

With respect to "process partitioning" gaps
(partitioning the curve into segments produced by * For complex situations, is connectivity
different processes), a partition can be viewed as provided, or must it be established
an explanation of how the curve was constructed. * If a curve possesses attributes (e.g., gray
Explanations have the following attributes which,
when assigned different "values," lead to different scale, width) other than "shape" that are
explanations and thus different partitions: they obtained -- by measurement on an

Vocabulary (primitives and relations) -- actual "image," or as symbolic tags
what properties of our data should be provided as part of the given data set?
represented, and how should these
properties be computed? That is, we must D. Evaluation
select those aspects of the problem domain
we consider relevant to our partition How do we determine if a given technique or
decisions (e.g., geometric shape, gray approach to the partitioning problem is successful?
scale, line width, semantic content), and How can we compare different techniques? We have
enable their computation by providing already observed that, to the extent that
models for the corresponding structures partitioning is a "well-defined" problem at all, it
(e.g., straight-line segment, circular arc, has a large number of alternative formulations and
wiggly segment). We must also allow for parameterizations. Thus, a technique that is
the appropriate "viewing" conditions; e.g., dominant under one set of conditions may be
symmetry, repeated structure, parallel inferior under a different parameterization. Never
lines, are global concepts that imply that the less, any evaluation procedure must be based on
the curve has finite extent and can be the following considerations:
viewed as a "whole," as opposed to only * Is there a known "correct" answer (e.g.,
permitting computations that are based on because of the way the curves were
some limited interval or neighborhood of constructed)?
(or along) the curve.

* Definition of Noise -- in a generic sense, Is the problem formulated in such a way

any data set that does not have a "simple that there is a "provably" correct answer?

(concise)" description is noise. Thus, * How good is the agreement of the
noise is relative to both the selected partitioned data with the descriptive
descriptive language and an arbitrary level vocabulary (models) in which the
of complexity. The particular choices for "explanation" is posed?
vocabulary and the acceptable complexity How good Is the agreement with (generic or
level determine whether a point is selected "expert") subjective human judgment?
as a partition point or considered to be a
noise element. * What is the trade-off between "false-

* Believability -- depending on the alarms" and "misses" in the placement of
competence (completeness) of our vocabulary partition points. To the extent that it is
comeecre (compln ues) tt o oaby bnot possible to ensure a perfect answer (in
tescrie any th atseleted may be the placement of the partition points),
encountered, the selected metric for there is no way to avoid such a trade-off.
judging similerity, and the arbitrary Even if the the relative weighting between
threshold we have chosen for believing that
a vocabulary term corresponds to some elct, tyis inhernt i n dcso

segment of a given curve, partition points explct, it is inherent in any decision

will appear, disappear, or shift, procedure -- including the use of
subjective human judgment.

C. Representation In spite of all of the previous discussion in
this section, it might still be argued that if we

The form in which the data is presented (i.e., take the union of all partition points obtained for
the input representation), as well as the type of all reasonable definitions and parameterizations of
data, are critical aspects of the problem the partition problem, we would still end up with a
definition, and will have a major impact on the "small" set of partition points for any given
decisions made by different approaches to the curve, and further, there may be a generic
partitioning task. Some of the key variables are: procedure for obtaining this covering set. While a

* Analog (pictorial) vs digital (quantized) full discussion of this posnibility is Is not

vs analytic description of the curves teasible here, we can construct a counterexample to
the unqualified conjecture based on selecting a

* Single vs multiple "views" (e.g., single very high ratio of the cost of a miss to a false-

vs. multiple quantizations of a given alarm in selecting the partition points. A (weak)
segment) refutation can also be based on the observation

* Input resolution vs. length of smallest that if a generic covering set of partition points
segment of interest exists, then there should be a relatively

consistent way of ordering all the points on a

given curve as to their being acceptable partition
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points; the experiment presented in Figure 1 A. Stability
indicates that, in general, such a consistent The "principle of stability," is the assertion
ordering does not exist, that any valid perceptual decision should be stable

under at least small perturbations of both the
imaging conditions and the decision algorithm

III PARADIGMS FOR CURVE PARTITIONING parameters. This generalization of the assumption
of "general position" also subsumes the assertion
(often presented as an assumption) that most of a

Almost all algorithms employed for curve scene must be describable in terms of continuous
partitioning appear to be special cases variables if meaningful interpretation is to be
(instantiations) of one or more of the following possible.
paradigms: It is interesting to observe that many of the

* Local Detection of Distinguished Points: a constructs in mathematics (e.g., the derivative)

partition point is inserted at locations are based on the concepts of convergence and limit,
along the curve at which one or more of the also subsumed under the stability principle.
descriptive attributes (e.g., curvature, Attempts to measure the digital counterparts of the
distance from a coordinate axis or mathe-atical concepts have traditionally employed
centroid) is determined to have a window type "operators" that are not based on a
discontinuity, an extreme value (maxima or limiting process; it should come as no surprise
minima), or a zero value separating that such attempts have not been very effective.
intervals of positive and negative values. In practice, if we perturb the various imaging

* Best Global Description: a set of partition and decision parameters, we observe relatively

points is inserted at those locations along stable decision regions separated by obviously
a curve that allow the "best" description unstable intervals (e.g., the two distinct percepts
of the associated segments in terms of some produced by a Necker cube). The stable regions
a priori set of models (e.g., the set of represent alternative hypotheses that generally
models might consist of all first and cannot be resolved without recourse to either
second degree polynomials, with only one additional and more restrictive assumptions, or
model permitted to explain the data between semantic (domain-specific) knowledge.
two adjacent partition points; the quality
of the description might be measured by the B. Complete, C and Complexity Limited
mean square deviation of the data points Explanation
from the fitting polynomials).

" Confirming Evidence: given a number of The decision-making process in image
"Independent" procedures (or possibly interpretation, i.e. matching image derived data
dindepeent" proedreis (o possibly to a priori models, not only must be stable, but
different parameterizations of a given must also explain all the structure observable in
points, we retain only those partition the data. Equally important, the explanation must
points that are common to some subset of satisfy specific criteria for believability and
the different procedures or their complexity. Believability is largely a matter of
the diferen p d o h offering the simplest possible description of the
parameterizations, data and, in addition, explaining any deviation of

" Recursive Simplification: the input data is the data from the models (vocabulary) used in the
subjected to repeated applications of some description. Even the simplest description,
transformation that monotonically reduces however, must also be of limited complexity;
some measurable aspect of the data to one otherwise or it will not be understandable and thus
of a finite number of terminal sLates not believable.
(e.g., differentiation, smoothing, By making the foregoing principles explicit,
projection, thresholding). The hierarchy we can directly invoke them (as demonstrated in the
of data sets thus produced is then following section) to formulate effective
processed with an algorithm derived from algorithms for perceptual organization.
the previous three paradigms.

V INSTANTIATION OF THE THEORY: SPECIFICIV PRINCIPLES OF EFFECTIVE (ROBUST) TECHNIQUES FOR CURVE PARTITIONING

MODEL-BASED INTERPRETATION

In this section we offer two effective new
What underlies our choice of partitioning algorithms for curve partitioning (program listings

criteria? We assert that any comapetent avalable from the authors). In each case, we

partitioning technique, regardless of which of the
first describe the the algorithm, and later

above paradigms is employed, will incorporate the indicate how it was motivated and constrained by
following principles. the principles just presented. In both algorithms,

the key ideas are: (I) to view each point, or
segme of a curve, from as many perspectives as
possibie, retaining only those partition points

D-3



receiving the highest level of multiple of the expected noise along the curve and the
confirmation; and (2) inhibiting the further length of the chord.
selection of partition points when the density of At each resolution (i.e., stick size), the
points already selected exceeds a preselected orcomputed limit, algorithm orders the critical points according tothe values in their accumulators and selects the

best ones first. To avoid setting an arbitrary
A. Curve Partitioning Based on Detecting Local "goodness" threshold ,or distinguishing critical

Discontinuity from ordinary points, we use a complexity
In this sub-section we present a new approach criterion. To halt the selection process, we stopIn hissubsecionwepreenta nw aproch when the points being suggested are too close to

to the problem of finding points of discontinuity the seected le ie resol to

("critical points") on a curve. Our criterion for those selected previously at the given resolution.

success is whether we can match the performance of In our experiments we define "too close" as being
within a quarter of the stick length used to

human subjects given the same task (e.g., see

Figure 1). The importance of this problem from the suggest the point.

standpoint of the psychology of human vision dates After the critical points have been selected
back to the work of Attneave [19541. However, it at the coarsest resolution, the algorithm is
has long been recognized as a very difficult applied at higher resolutions to locate additional
problem, and no satisfactory computer algorithm critical points that are outside the regions
currently exists for this purpose. An excellent dominated by previously selected points. Figure 4a
discussion of the problem may be found in in Davis shows the critical points determined at the coarst
[19771; other pertinent references include level (stick length of 100 pixels; approximately
Rosenfeld [19751, Freeman [1977], Kruse [19781, and 1/10 of the length of the curve). Figure 4b shows
Pavlidis [1980]. Results and observations akin and all the critical points labeled with the stick
complementary to those presented here can be found lengths used to determine them. (We note that this
in Hoffman [1982] and in Witkin (1983]. critical point detection procedure does not locate

Most approaches equate the search for critical inflection points or smooth transitions between

points with looking for points of high curvature, segments, such as the transition from an arc of a

Although this intuition seems to be correct, it is circle to a line tangent to the circle.)

incomplete as stated (i.e., it does not explicitly The above algorithm appears to be very
take into account "explanation" complexity); effective, especially for finding obvious partition
further, the methods proposed for measuring points and in not making "ugly" mistakes (i.e.,
curvature are often inadequate in their selection choosing partition points at locations that none of
of stability criteria. In Figure 2 we show some our human subjects would pick). Its ability to
results of measuring curvature using discrete find good partition points is based on evaluating
approximations to the mathematical definition, each point on the curve from multiple viewpoints

We have developed an algorithm for locating (placements of the stick) -- a direct application
critical points that Invokes a model related to, of the principle of stability. Requiring that the

but distinct from, the mathematical concept of partition points remain stable under changes in

curvature. The algorithm labels each point on a disot apper to beaeffeci n was nt

curve as belonging to one of three categories: did not appear to be effective and was not

(a) a point in a smooth interval, (b) a critical employed; in fact, stick length was altered by a

point, or (c) a point in a noisy interval. To make significant amount in each iteration, and partition

this choice, the algorithm analyzes the deviations points found at these different scales of

of the curve from a chord or "stick" that is resolution were not expected to support each other,

iteratively advanced along the curve (this will be but were assumed to be due to distinct phenomena.

done for a variety of lengths, which is analogous The avoidance of ugly mistakes was due to our
to analyzing the curve at different resolutions), method of limiting the number of partition points
If the curve stays close to the chord, points in that could be selected at any level of resolution,
the interval spanned by the chord will be labeled or in any neighborhood of a selected point (i.e.,
as belonging to a smooth section. If the curve limiting the explanation complexity). One concept
makes a single excursion away from the chord, the we invoked here, related to that of complete
point In the interval that is farthest from the explanation, was that the detection procedure could
chord will be labeled a critical point (actually, not be trusted to provide an adequate explanation
for each placement of the chord, an accumulator when more than a single critical point was in its
associated with the farthest point will be field of view, and in such a situation, any
incremented by the distance between the point and decision was deferred to later iterations at higher
the chord). If the curve makes two or more levels of resolution (i.e., shorter stick lengths).
excursions, points in the interval will be labeled Finally, in accord with our previous
as noise points. discussion, the algorithm has two free parameters

We should note here that "noisy" intervals at that provide control over its definition of noise
low resolution (large chord length) will have many (i.e., variations too small or too close together
critical points at higher resolution (small chord to be of interest), and its willingness to miss a
length). Figure 3 shows examples of curve segments good partition point so as to be sure it does not
and their classifications. The distance from a select a bad one.
chord that defines a significant excursion (i.e.,
the width of the boxes in Figure 3) is a function
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B. Curve Partitioning Based and Detecting Process While admittedly operating in a relatively
Homogenity simple environment, the above algorithm exhibits

To match human performance in partitioning a excellent performance. This is true even in the
difficult case of finding partition points along

curve, by recognizing those locations at which one the smooth interface between a straight line and a
generating process terminates and another begins,
is orders of magnitude more difficult than circle to which the line is tangent.
partitioning based on local discontinuity analysis. Both basic principles, stability and complete
As noted earlier, a critical aspect of such explanation, are deeply embedded in this algorithm.
performance is the size and effectiveness of the Retaining only those partition points which persist
vocabulary (of a priori models) employed, under different "viewpoints" was motivated by the
Explicitly providing a general purpose vocabulary principle of stability. Our technique for
to the machine would entail an unreasonably large evaluating the fit of the segment of a curve
amount of work -- we hypothesize that the only between two partition points, to both the line and
effective way of allowing a machine to acquire such circle models, requires that the deviations from an
knowledge is to provide it with a learning acceptable model have the characteristics of
capability. "white" (random) noise; this is an instantiation of

For our purposes in this investigation, we the principle of complete explanation, and is based

chose a problem in which the relevant vocabulary on our previous work presented in Bolles [1982].

was extremely limited: the curves to be partitioned
are composed exclusively of straight lines and arcs
of circles. (Two specific applications we were
interested in here were the decomposition of
silhouettes of industrial parts, and the
decomposition of the line scans returned by a We can summarize our key points as follows:
"structured light" ranging device viewing scenes * The partition problem does not have a
containing various diameter cylinders and planar unique definition, but is parameterized
faced objects lying on a flat surface.) Our goal wituespectnto su i s purpoeerata
here was to develop a procedure for locating wihresetto such it e e dat
critical points along a curve in such a way that representation, trade-off between different
the segments between the critical points would be error types (false-alarms vs misses), etc.
satisfactorily modeled by either a straight-line * Psychologically acceptable partitions are
segment or a circular arc. Relevant work associated vith an implied explanation that
addressing this problem has been done by Montanari must satisfy criteria for accuracy,
(19701, Ramer [1972], Pavlidis [1974], Liao [1981], complexit), and believability. These
and Lowe [19821. criteria can be formulated in terms of a

Our approach is to analyze several "views" of set of principles, which, in turn, can

a curve, construct a list of possible critical guide the construction of effective

points, and then select the optimum points between partitioning algorithms (i.e., they provide

which models from our vocabulary can be fitted, necessary conditions).

For our experiments we quantized an analytic curve One implication contained in these
at several positions and orientations (with respect observations is that a purely mathematical
to a pixel grid), then attempted to recover the definition of "intrinsic structure" (i.e., a
original model, definition justified solely by appeal to

For achvie (qantzaton)of he urv we mathematical criteria or principles) cannot, byFor each view (quantization) of the curve we itlfbesfcenyslciv toerea a

locate occurrences of lines and arcs, marking their itself, be sufficiently selective to serve as a

ends as prospective partition points. This is basis for duplicating human performance in the

accomplished by -andomly selecting small seed partitioning task; generic partitioning (i.e.,

segments from the curve, fitting to them a line or partitioning in the absence of semantic content) is

arc, examining the fit, and then extending as far based on psychological "laws" and physiological

as possible those models that exhibit a good fit. mechanisms, as well as on correlations embedded in

After a large number of seeds have been explored in the data.

the different views of the curve, the histogram In this paper we have looked at a very limited
(frequency count as a function of path length) of subset of the class of all scene partitioning
beginnings and endings is used to suggest critical problems; nevertheless, it is interesting to
points (in order of their frequency of occurrence). speculate on how the human performs so effectively
Each new critical point, considered for inclusion in the broader domain of interpreting single images
in the explanation of how the curve is constructed, of t.itural scenes. The speed of response in the
introduces two new segments which are compared to humans ability to interpret a sequence of images of
both our line and circle models. If one or both of dissimilar scenes makes it highly questionable that
the segments have acceptable fits, the there is some mechanism by which he simultaneously
corresponding curve segments are marked as matches all his semantic primitives against the
explained. Otherwise, the segments are left to be imaged data, even if we assume that some
explained by additional critical points and the independent process has already presented him with
partitions they imply. The addition of critical a "camera model" that resolves some of the
points continues until the complete curve is uncertainties in image scale, orientation, and
explained. Figure 5 shows an example of the projective distortion. How does the human index

operation of this algorithm.
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into the large semantic data base to find the
appropriate models for the scene at hand? 6. Kruse, B., C.V.K. Rao, "A Matched Filtering

Technique for Corner Detection," in Proc. ofConsider the following paradigm: first a set the Fourth International Joint Conference on

ot coherent components is recovered from the image Pattern Recognition, lyoto, Japan, pp. 642-644

on the basis of very general (but parameterized) (November 1978).

clustering criteria of the type described earlier;

next, a relatively small set of semantic models, 7. Liao, Y., "A Two-Stage Method of Fitting Conic
which are components of many of the objects in the Arcs and Straight-Line Segments to Digitized
complete semantic vocabulary, are matched against Contours," in Prec. of the Pattern Recognition
the extracted clusters; successful matches are then Cntousagi Proc. oteaern Reogito
used to index into the full data base and the Texas, pp. 224-229 (August 1981).
corresponding entries are matched against both the
extracted clusters and adjacent scene components; 8. Love, D.G., T.G. Binford, "Segmentation and
these additional successful matches will now Aggregation; an Approach to Figure-Ground
trigger both iconic and symbolic associations that phenomena," Proceedings of the Image
result in further matching possibilities as well as Underatanding Workshop, Stanford University,
perceptual hypotheses that organize large portions Stanford, California (September 1982).
of the image into coherent structures (gestalt
phenomena). 9. Montanar, U., "A Note on Minimal Length

If this paradigm is valid, then, even though Polygonal Approximation to a Digitized
much of the perceptual process would depend on an Contour," Communications of the ACM, Vol. 13,
individual's personal experience and Immediate pp. 41-47 (January 1970).
goals, we might still expect "hard wired"
algorithms (genetically programmed, but with 10. Pavlidis, T., "Algorithms for Shape Analysis
adjustable parameters) to be employed in the of Contours and Waveforms," IEEE Transactions
initial partitioning steps, on Pattern Analysis and Machine Intelligence,

In this paper, we have attempted to give Vol. PAMI-2, pp. 301-312 (July 1980).

computational definitions to some of the organizing 11. Pavlidis, T., S.L. Horowitz, "Segmentation of
criteria needed to approach human level performance Plane Curves," IEEE Transactions on Computers,
in the partitioning task. However, we believe that Vol. C-23, pp. 860-870 (August 1974).
our more important contribution has been the
explicit formulation of a set of principles that we 12. Ramer, U., "An Iterative Procedure for the
assert must be satisfied by any effective procedure Polygonal Approximation of Plane Curves,"
for perceptual grouping. Computer Graphics and Image Processing,

Vol. 1, pp. 244-256 (1972).
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TASK 1 Select AT MO40ST 5 points to diUSCribe this ine dirawrrg so that
)roU will be able to reconstruct It as well as possible 10 years
fromt now, given lust th, seojuenrce of selectedt points

Since fiet points were sufficient to to,,, anr approximrate corrvex hull
of the figur, virtuall y everyVone did so. selectinrg the 5 points show,, below

TASK 2. Assumre that a frien~d of yours is going to be asked to recognrize
this lie drawing on the basis of the informatiorn you supply him Wa This fie shows The reulso applying th improved angle detection
about i, He will be presenrted with a set of drawings, one of procedure dfescribed irn Hoseeriell ! 1975 to adiqetezed version of the
which will be a rotated arrd scaled veersion ot thes cuve You are curve in Figure I The procedlure works que well. except tor the entro
only allowed to proveded him with A SEQUENCE OF AT MOST ductionr of a breakporrr nr thr middle of the righrt side and the merging

5 PONTS.Marl thepons yo woud seectof two small bumps at the tight of thre serrusoedal segment,

Sirnce 5 points were not enough to outlirne all the key features of the
frgure, the subjects had to decide what to leave out, They seemed1 to adopt
one of two general strategies Ia) use the limited number of points to describe0
one distinct feature well (illustrated by the selecteorn on the left)I. or (bI use

the points to outline the basic shape of the fegure (shown, or, the right)

00

TASK 3: Thins lie drawing was constructed try peecing together segments
produced by defferent processes Please indicate where you thinrk
the junctrons between, segments occur AND VERY BRIEFLYv
DESCRIBE EACH SEGMENT Uise as few poinrts as posvelble,
but no more than 5

The constraint of being lmeted to 5 poernts forced the subjects to corr
sesfer the whole curve and develop a c0,5stserrt, global explanration The (b) However If we extract a portionr of the curve arid apply the algorithm

* ~~~~~basic strategy seemed to be a recursive one err which threy first partitioned the tet rue eea r, te~a , ekor sfeas ~eerry'.rcrs
curve into 2 segments by placirrg a bre'akpoint at positiorn I and another orr, ,,inrdcssvrladloa bapiisbcuetecag uv
at either position 2 or position 3 to separate the smooth curves from the length causes some eel the algor thrr rrararrrters tor chrrarry
sharp cor ners. Then they used the remairnrrg poirrts to subdivide these seq
ments according to zvocabulary they selectedf that included such thrrgs as FIGURE 2 ESTIMATION OF CURVATURE F ROM
treangles. rectangles. and senusords. For example, almost everyone placeds
breakpoints at positions 3 and 4 and described the errclosed segment as part DISCRETE APPROXIMATIONS
of a triangle Similarly the segment between positions I and 5 was generally
dlescribed as a decaying senusoed ft ins interesting to rnote that in task I the
subjects consistently placed a point close to position 5 but always farther to
the right. because they were trying to approximate a convex hull The dint
ferent purposes led to different placements.

3 2
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FIGURE 1 EXPERIMENTS IN WHICH HUMAN SUBJECTS FIGURE 3 EXAMPLE CURVE SEGMENTS AND
WERE ASKED TO SEGMENT A CURVE THEIR CLASSIFICATIONS
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